A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The extracellular polysaccharide Pel makes the attachment of to surfaces symmetric and short-ranged. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biofilms are surface-mounted, multicellular communities of microbes. Biofilms are often associated with chronic infections that resist treatment, evade the immune system, and damage host tissue. An essential characteristic of the biofilm state is that constituent organisms are bound in a polymeric matrix. This matrix gives the system spatial structure and clusters bacteria near each other, facilitating intercellular interactions. The strain PAO1 is widely studied as a model biofilm-forming organism. The polymeric matrix of PAO1 biofilms is dominated by two bacteria-produced extracellular polymers, Pel and Psl. We use a combination of optical and atomic force microscopy to examine the roles of these polymers in very early biofilm development. In agreement with other researchers, we find that Psl mediates strong attachment to a glass surface. We find that Pel alone can mediate some attachment, but not as permanent as that mediated by Psl. Unexpectedly, we find that Pel promotes symmetric attachment, in the form of rod-shaped bacteria lying down flat on the surface, and that the presence of Pel makes attachment forces more short-ranged than they are with Psl alone. We suggest that these effects may result from synergistic interactions of Pel with the Psl polymeric matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719985PMC
http://dx.doi.org/10.1039/C3SM27638DDOI Listing

Publication Analysis

Top Keywords

polymeric matrix
12
pel attachment
8
pel psl
8
find pel
8
pel
6
attachment
5
psl
5
extracellular polysaccharide
4
polysaccharide pel
4
attachment surfaces
4

Similar Publications