Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescent protein (FP) tagging approaches are widely used to determine the subcellular location of plant proteins. Here we give a brief overview of FP approaches, highlight potential technical problems, and discuss what to consider when designing FP/protein fusion constructs and performing transformation assays. We analyze published FP tagging data sets along with data from proteomics studies collated in SUBA3, a subcellular location database for Arabidopsis proteins, and assess the reliability of these data sets by comparing them. We also outline the limitations of the FP tagging approach for defining protein location and investigate multiple localization claims by FP tagging. We conclude that the collation of localization datasets in databases like SUBA3 is helpful for revealing discrepancies in location attributions by different techniques and/or by different research groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690342PMC
http://dx.doi.org/10.3389/fpls.2013.00214DOI Listing

Publication Analysis

Top Keywords

fluorescent protein
8
protein tagging
8
subcellular location
8
data sets
8
tagging
5
tagging tool
4
tool define
4
define subcellular
4
subcellular distribution
4
distribution proteins
4

Similar Publications

Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.

View Article and Find Full Text PDF

Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF