Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhsa.2013.04.046DOI Listing

Publication Analysis

Top Keywords

letter "functional
4
"functional outcome
4
outcome open
4
open reduction
4
reduction chronic
4
chronic perilunate
4
perilunate injuries"
4
letter
1
outcome
1
open
1

Similar Publications

Neural Quantum Embedding via Deterministic Quantum Computation with One Qubit.

Phys Rev Lett

August 2025

Southern University of Science and Technology, Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Shenzhen 518055, China.

Quantum computing is expected to provide an exponential speedup in machine learning. However, optimizing the data loading process, commonly referred to as "quantum data embedding," to maximize classification performance remains a critical challenge. In this Letter, we propose a neural quantum embedding (NQE) technique based on deterministic quantum computation with one qubit (DQC1).

View Article and Find Full Text PDF

We study nonperturbative effects of torus partition function of the TT[over ¯]-deformed 2D conformal field theory (CFT) by resurgence in this Letter and a companion paper. The deformed partition function can be written as an infinite series of the deformation parameter λ. We develop highly efficient methods to compute perturbative coefficients in the λ expansion.

View Article and Find Full Text PDF

This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This is the first measurement to use data from all five years of operation of the MicroBooNE experiment, corresponding to an exposure of 1.11×10^{21} protons on target, a 70% increase on past results.

View Article and Find Full Text PDF

Gaining a fundamental understanding of turbulent flows of dilute polymer solutions has been a challenging and outstanding problem for a long time. In this Letter, we examine homogeneous, isotropic polymeric turbulence at large Reynolds and Deborah numbers through direct numerical simulations. While at the largest scales at which the flow inertial turbulence exists, we find that the flow is fundamentally altered from Newtonian turbulence below the Kolmogorov scale.

View Article and Find Full Text PDF