A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Forecasting deforestation and carbon emissions in tropical developing countries facing demographic expansion: a case study in Madagascar. | LitMetric

Forecasting deforestation and carbon emissions in tropical developing countries facing demographic expansion: a case study in Madagascar.

Ecol Evol

Cirad - UPR BSEF F34398 Montpellier, Cedex 5, France ; Cirad-Madagascar - DP Forêt et Biodiversité BP 853, Ambatobe, 101-Antananarivo, Madagascar.

Published: June 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anthropogenic deforestation in tropical countries is responsible for a significant part of global carbon dioxide emissions in the atmosphere. To plan efficient climate change mitigation programs (such as REDD+, Reducing Emissions from Deforestation and forest Degradation), reliable forecasts of deforestation and carbon dioxide emissions are necessary. Although population density has been recognized as a key factor in tropical deforestation, current methods of prediction do not allow the population explosion that is occurring in many tropical developing countries to be taken into account. Here, we propose an innovative approach using novel computational and statistical tools, including R/GRASS scripts and the new phcfM R package, to model the intensity and location of deforestation including the effect of population density. We used the model to forecast anthropogenic deforestation and carbon dioxide emissions in five large study areas in the humid and spiny-dry forests of Madagascar. Using our approach, we were able to demonstrate that the current rapid population growth in Madagascar (+3.39% per year) will significantly increase the intensity of deforestation by 2030 (up to +1.17% per year in densely populated areas). We estimated the carbon dioxide emissions associated with the loss of aboveground biomass to be of 2.24 and 0.26 tons per hectare and per year in the humid and spiny-dry forest, respectively. Our models showed better predictive ability than previous deforestation models (the figure of merit ranged from 10 to 23). We recommend this approach to reduce the uncertainty associated with deforestation forecasts. We also underline the risk of an increase in the speed of deforestation in the short term in tropical developing countries undergoing rapid population expansion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686203PMC
http://dx.doi.org/10.1002/ece3.550DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
16
dioxide emissions
16
deforestation carbon
12
tropical developing
12
developing countries
12
deforestation
10
anthropogenic deforestation
8
population density
8
humid spiny-dry
8
rapid population
8

Similar Publications