98%
921
2 minutes
20
Here we applied behavioral testing, pharmacology, and in vivo electrophysiology to determine the function of the serotonin 5-HT5A receptor in goldfish startle plasticity and sensorimotor gating. In an initial series of behavioral experiments, we characterized the effects of a selective 5-HT5A antagonist, SB-699551 (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), on prepulse inhibition of the acoustic startle response. Those experiments showed a dose-dependent decline in startle rates in prepulse conditions. Subsequent behavioral experiments showed that SB-699551 also reduced baseline startle rates (i.e., without prepulse). To determine the cellular mechanisms underlying these behaviors, we tested the effects of two distinct selective 5-HT5A antagonists, SB-699551 and A-843277 (N-(2,6-dimethoxybenzyl)-N'[4-(4-fluorophenyl)thiazol-2-yl]guanidine), on the intrinsic membrane properties and synaptic sound response of the Mauthner cell (M-cell), the decision-making neuron of the startle circuit. Auditory-evoked postsynaptic potentials recorded in the M-cell were similarly attenuated after treatment with either 5-HT5A antagonist (SB-699551, 26.41 ± 3.98% reduction; A-843277, 17.52 ± 6.24% reduction). This attenuation was produced by a tonic (intrinsic) reduction in M-cell input resistance, likely mediated by a Cl(-) conductance, that added to the extrinsic inhibition produced by an auditory prepulse. Interestingly, the effector mechanisms underlying neural prepulse inhibition itself were unaffected by antagonist treatment. In summary, these results provide an in vivo electrophysiological characterization of the 5-HT5A receptor and its behavioral relevance and provide a new perspective on the interaction of intrinsic and extrinsic modulatory mechanisms in startle plasticity and sensorimotor gating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618389 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4733-12.2013 | DOI Listing |
Pharmacol Rep
October 2024
Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
Background: The serotonin 5-HT receptor has attracted much more research attention, due to the therapeutic potential of its ligands being increasingly recognized, and the possibilities that lie ahead of these findings. There is a growing body of evidence indicating that these ligands have procognitive, pro-social, and anti-depressant properties, which offers new avenues for the development of treatments that could address socially important conditions related to the malfunctioning of the central nervous system. The aim of our study was to unravel the molecular determinants for 5-HTR ligands that govern their activity towards the receptor.
View Article and Find Full Text PDFPurpose: Patients have been severely suffered from cancer associated pain, and pancreatic cancer is the most severe form of cancer associated with pain. There are very few options available to manage it. The present report evaluated the effect of 5HT2A on pancreatic cancer associated pain.
View Article and Find Full Text PDFBehav Brain Res
April 2024
Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil; Graduate Program in Biological Science
Studies on the social modulation of fear have revealed that in social species, individuals in a distressed state show better recovery from aversive experiences when accompanied - referred to as social buffering. However, the underlying mechanisms remain unknown, hindering the understanding of such an approach. Our previous data showed that the presence of a conspecific during the extinction task inhibited the retrieval of fear memory without affecting the extinction memory in the retention test.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
September 2022
Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan.
Background: Fragile X syndrome (FXS) is a genetic condition that causes a range of developmental problems, including intellectual disability, aggressive behavior, anxiety, abnormal sensory processing, and cognitive impairment. Despite intensive preclinical research in Fmr1-targeted transgenic mice, an effective treatment for FXS has yet to be developed. We previously demonstrated that ASP5736, a 5-Hydroxytryptamine (serotonin) receptor 5A receptor antagonist, ameliorated scopolamine-induced working memory deficits in mice, reference memory impairment in aged rats, and methamphetamine-induced positive symptoms and phencyclidine-induced cognitive impairment in animal models of schizophrenia.
View Article and Find Full Text PDFRSC Adv
May 2022
Department of Chemistry, Chemical Biology Laboratory, University of Delhi 110007 Delhi India