98%
921
2 minutes
20
A chip-based system mimicking the transport function of the human cardiovascular system has been established at minute but standardized microsystem scale. A peristaltic on-chip micropump generates pulsatile shear stress in a widely adjustable physiological range within a microchannel circuit entirely covered on all fluid contact surfaces with human dermal microvascular endothelial cells. This microvascular transport system can be reproducibly established within four days, independently of the individual endothelial cell donor background. It interconnects two standard tissue culture compartments, each of 5 mm diameter, through microfluidic channels of 500 μm width. Further vessel branching and vessel diameter reduction down to a microvessel scale of approximately 40 μm width was realised by a two-photon laser ablation technique applied to inserts, designed for the convenient establishment of individual organ equivalents in the tissue culture compartments at a later time. The chip layout ensures physiological fluid-to-tissue ratios. Moreover, an in-depth microscopic analysis revealed the fine-tuned adjustment of endothelial cell behaviour to local shear stresses along the microvasculature of the system. Time-lapse and 3D imaging two-photon microscopy were used to visualise details of spatiotemporal adherence of the endothelial cells to the channel system and to each other. The first indicative long-term experiments revealed stable performance over two and four weeks. The potential application of this system for the future establishment of human-on-a-chip systems and basic human endothelial cell research is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3lc50217a | DOI Listing |
Pol Merkur Lekarski
September 2025
Kharkiv Clinical Hospital on Railway Transport No. 1 ≪Health Care Center≫ of Joint-Stock Company «Ukrainian Railways», Kharkiv, Ukraine.
Objective: Aim: The purpose was to identify the morphological features of the great saphenous vein in patients with chronic venous disease of the lower extremities undergoing treatment with endovenous high-frequency electric welding in automatic mode, endovenous laser ablation, and ultrasound-guided microfoam sclerotherapy.
Patients And Methods: Materials and Methods: The material for the comprehensive morphological study consisted of fragments of the great saphenous vein obtained from 32 patients with chronic venous disease of the lower extremities. The material was divided into three groups according to the endovenous treatment techniques applied.
Objective: .Aim: To investigate the pathomorphological changes in the terminal chorionic villi during COVID-19 in pregnant women.
Patients And Methods: Materials and Methods: A total of 123 placentas were studied in cases of live term births (groups І) and antenatal asphyxia (groups ІІ).
Pol Merkur Lekarski
September 2025
I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE.
Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..
Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.
J Infect Dis
September 2025
Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA USA.
Sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the microvasculature is a major virulence determinant. While the sequestration of mature stage parasites (trophozoite and schizonts) to vascular endothelium is well established, the conditions that promote ring-stage IE sequestration is less understood. Here, we observed in ring-stage parasites that febrile exposure increased transcript levels of several exported parasite genes involved in the trafficking of the P.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Orthopedic Surgery, Center for Shoulder and Elbow Surgery, Konkuk University School of Medicine, Seoul, Korea.
Purpose: We aimed to compare the effects of atelocollagen (AC) and individual growth factors on the expression of key molecular markers associated with tendon healing.
Methods: C2C12 myoblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 5% fetal bovine serum (FBS) and treated with 1 nM or 10 nM of Atelocollagen (AC), bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1), or vascular endothelial growth factor (VEGF) for 5 days. After 5 days of treatment, cells were harvested from the culture medium, and Western blot analysis was performed to quantify the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), Collagen type I (Col I), Collagen type Ⅲ (Col Ⅲ), and Tenascin C (TnC).