98%
921
2 minutes
20
Objectives: This study aimed to analyze the effects of 5-aminosalicylic acid (5-ASA) on intestinal microbiota and immune regulation in inflammatory bowel disease (IBD) and to investigate the correlation between intestinal microbiota and immune factors.
Methods: Colitis in mice was induced by oxazolone. The community composition of luminal and mucosal microbiota was analyzed by a terminal restriction fragment length polymorphism. The expression of occludin, toll-like receptor (TLR)-2, TLR-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 proteins were measured by immunohistochemistry and Western blot. Linear correlation between intestinal microbial community and the severity of the colitis or intestinal microbial community and expressions of immune factors were determined.
Results: Protective bacteria decreased while aggressive bacteria increased in the colitis group. The richness and diversity of both luminal and mucosal microbiota decreased in the colitis group the decrease was enhanced in the 5-ASA-treated group. The diversity of mucosal microbiota significantly correlated with the extent of the colitis. Expressions of occludin, TLR-2, TLR-4, tumor necrosis factor-α and NF-κB p65 were significantly correlated with the diversity of mucosal microbiota.
Conclusions: Mucosal microbiota are important in the pathogenesis of IBD. 5-ASA increases protective bacteria but decreases aggressive bacteria, thus inducing the new intestinal microbial homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1751-2980.12079 | DOI Listing |
Front Cell Infect Microbiol
September 2025
Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China.
The gut microbiota of piglets is crucial for intestinal health and immune function, yet highly susceptible to various factors. Multiple factors such as Genetic and Sow Factors, feeding environment, diet and pathogen combine to shape the gut microbiota of piglets. PEDV, a highly pathogenic and transmissible virus, disrupts the gut microbiota by damaging the intestinal epithelial barrier, leading to microbial imbalance, weakened gut immunity, and severe diarrhea.
View Article and Find Full Text PDFAlzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.
View Article and Find Full Text PDFPLoS Pathog
September 2025
INSERM UMR 1291, CNRS UMR 5051, Université de Toulouse, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France.
Vδ1 γδ T cells are key players in innate and adaptive immunity, particularly at mucosal interfaces such as the gut. An increase in circulating Vδ1 cells has long been observed in people with HIV-1, but remains poorly understood. We performed a comprehensive characterization of Vδ1 T cells in blood and duodenal intra-epithelial lymphocytes, obtained from endoscopic mucosal biopsies of 15 people with HIV-1 on antiretroviral therapy and 15 HIV-seronegative controls, in a substudy of the ANRS EP61 GALT study (NCT02906137).
View Article and Find Full Text PDFJ Anim Sci
September 2025
Department of Animal Sciences, Laval University, Québec, QC G1V 0A6, Canada.
In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.
View Article and Find Full Text PDF