Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The purpose of this study is to visualize the migration of reporter macrophages expressing both the human sodium iodide symporter (hNIS) and enhanced firefly luciferase (effluc) gene in mice with chemically induced inflammation.

Procedures: A macrophage cell line expressing both hNIS and effluc genes (Raw264.7/hNIS-effluc, herein referred to as a Raw264.7/NF) was established by cotransduction of two genes into a murine macrophage cell line (Raw264.7), and cell proliferation and phagocytic activity were compared between parental Raw264.7 and Raw264.7/NF cells. Both serial bioluminescence imaging (BLI) and small animal positron emission tomography (PET) imaging with I-124 were performed in inflammation-induced mice at various time points after intravenous injection of either Raw264.7 or Raw264.7/NF cells.

Results: There was no significant difference in cellular proliferation and phagocytic activity between parental Raw264.7 and Raw264.7/NF cells. Early distribution of Raw264.7/NF cells was successfully visualized in the lung and spleen by BLI, but not by I-124 PET imaging. BLI signals, but not PET signals, were observed from the inflammation site at day 4 after the injection of Raw264.7/NF cells, and the signal intensity gradually increased until day 8. In contrast, focal uptake of I-124 was first detected at the site of inflammation at postinjection day 8, and signal intensity from the inflamed lesion was highest at that time point. While visualization of the inflamed lesion was possible by both BLI and PET imaging until day 14, it was only possible by BLI until day 21 after injection.

Conclusions: Tracking of macrophage migration toward inflammation foci was successfully achieved in vivo from early time points by dual reporter gene imaging with a combination of nuclear and optical reporters. Multimodal reporter imaging of macrophages might successfully overcome the limitations of single reporter gene imaging in preclinical models of inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-013-0645-8DOI Listing

Publication Analysis

Top Keywords

raw2647/nf cells
16
reporter gene
12
gene imaging
12
raw2647 raw2647/nf
12
pet imaging
12
dual reporter
8
imaging
8
tracking macrophage
8
macrophage migration
8
human sodium
8

Similar Publications

Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway.

Chin J Nat Med

June 2023

School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China. Electronic address:

Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings.

View Article and Find Full Text PDF