Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
High performance silicon nanowire (SiNW) sensors with SiO2/HfO2/Al2O3 (OHA) engineered sensing thin films were fabricated. A lower interface state density, a larger capacitance and a stronger chemical immunity, which are essential for enhancing the performance of devices, were accomplished by stacking thin SiO2, HfO2, and Al2O3 layers, respectively, in sequence on the SiNW channel. Compared with the conventional single SiO2 thin film, the staked OHA thin films demonstrated improved sensing performances; a higher sensitivity, a lower hysteresis voltage, and a smaller drift rate, as well as a higher output current. Therefore, the SiNW sensors with OHA stacked sensing thin films are very promising to biological and chemical sensor applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am401026z | DOI Listing |