A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During leaf development, a decrease in cell number often triggers an increase in cell size. This phenomenon, called compensation, suggests that some system coordinates cell proliferation and cell expansion, but how this is mediated at the molecular level is still unclear. The fugu2 mutants in Arabidopsis (Arabidopsis thaliana) exhibit typical compensation phenotypes. Here, we report that the FUGU2 gene encodes FASCIATA1 (FAS1), the p150 subunit of Chromatin Assembly Factor1. To uncover how the fas1 mutation induces compensation, we performed microarray analyses and found that many genes involved in the DNA damage response are up-regulated in fas1. Our genetic analysis further showed that activation of the DNA damage response and the accompanying decrease of cell number in fas1 depend on ATAXIA TELANGIECTASIA MUTATED (ATM) but not on ATM AND RAD3 RELATED. Kinematic analysis suggested that the delay in the cell cycle leads to a decrease in cell number in fas1 and that loss of ATM partially restores this phenotype. Consistently, both cell size phenotypes and high ploidy phenotypes of fas1 are also suppressed by atm, supporting that the ATM-dependent DNA damage response leads to these phenotypes. Altogether, these data suggest that the ATM-dependent DNA damage response acts as an upstream trigger in fas1 to delay the cell cycle and promote entry into the endocycle, resulting in compensated cell expansion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668073PMC
http://dx.doi.org/10.1104/pp.113.216796DOI Listing

Publication Analysis

Top Keywords

dna damage
20
damage response
20
atm-dependent dna
12
decrease cell
12
cell number
12
cell
10
response acts
8
acts upstream
8
upstream trigger
8
fas1
8

Similar Publications