98%
921
2 minutes
20
For bacterial cell surface display, the target protein needs to be linked to an anchoring motif, and it is essential to choose an appropriate anchoring motif for efficient and stable display of the protein on the cell surface. To isolate a potential anchoring motif that would allow a stable and enhanced display of target proteins on the surface of an Escherichia coli host, we analyzed the outer membrane proteome of E. coli. On the basis of this proteomic analysis, the outer membrane protein X (OmpX), which has a small, monomeric β-barrel structure and is highly expressed, was selected as a potential anchoring motif. The role of OmpX as an anchoring motif for cell surface display was demonstrated using three important industrial enzymes: endoxylanase, lipase, and alkaline phosphatase. Two different positions (Lys(122), Val(160)) in the extracellular loops of OmpX were examined for C-terminal fusion, and the biological activities and localization of the displayed enzymes were analyzed. All three enzymes examined were efficiently displayed on the E. coli cell surface with high activity. These results reveal that the use of OmpX as an anchoring motif is an efficient method to display functional enzymes on the surface of an E. coli host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-013-0236-9 | DOI Listing |
Sci Transl Med
September 2025
Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Human B cell immunity to the influenza hemagglutinin (HA) stem, a universal vaccine target, is often stereotyped and immunogenetically restricted, posing hurdles to study outside of humans. Here, we show that cynomolgus macaques vaccinated with an HA stem immunogen elicit humanlike public B cell lineages targeting two major conserved sites of vulnerability, the central stem and anchor epitopes. Central stem antibodies were predominantly derived from V1-138, the macaque homolog of human V1-69, a V gene preferentially used in human central stem broadly neutralizing antibodies (bnAbs).
View Article and Find Full Text PDFNat Cell Biol
September 2025
Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
Topologically associating domains (TADs) and chromatin architectural loops impact promoter-enhancer interactions, with CCCTC-binding factor (CTCF) defining TAD borders and loop anchors. TAD boundaries and loops progressively strengthen upon embryonic stem (ES) cell differentiation, underscoring the importance of chromatin topology in ontogeny. However, the mechanisms driving this process remain unclear.
View Article and Find Full Text PDFBiochemistry
September 2025
Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States.
BRCA1 is a crucial component of homologous recombination (HR), a high-fidelity pathway for repairing double-stranded DNA breaks (DSBs) in human cells. The central region of the BRCA1 protein contains two putative DNA binding domains (DBDs), yet their relative substrate specificities and functional contributions to HR remain unclear. Here, we characterized the DNA binding properties of DBD1 (amino acids 330-554), DBD2 (amino acids 894-1057), and BRCA1 C-terminal (BRCT) repeats using biolayer interferometry.
View Article and Find Full Text PDFMol Biol Cell
September 2025
Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405.
Motor-driven transport on microtubules is critical for distributing organelles throughout the cell. Most commonly, organelle movement is mediated by cargo adaptors, proteins on the surface of an organelle that directly recruit microtubule-based motors. An alternative mechanism called hitchhiking was recently discovered: some organelles move, not by recruiting the motors directly, but instead by using membrane contact sites to attach to motor-driven vesicles and hitchhike along microtubules.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
North West Cancer Research Institute, Bangor University, Bangor, Gwynedd LL57 2DG, United Kingdom.
Golgi_traff is a Pfam clan containing two members, Dymeclin (DYM) and HID1 domain-containing protein (HID). Interrogation of over 900 eukaryotic genomes with sequence models showed that both are ancient eukaryotic genes, which have exhibited different paths of gene loss, including from major taxonomic groups. For example, the Metazoa have both genes, whereas the Viridiplantae and Dikarya have lost HID and DYM, respectively.
View Article and Find Full Text PDF