Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
With environmental conditions changing rapidly, there is a need to move beyond single-species models and consider how communities respond to environmental drivers. We present a modeling approach that allows estimation of multispecies synchrony in productivity, or its components, and the contribution of environmental covariates as synchronizing and desynchronizing agents. We apply the model to long-term breeding success data for five seabird species at a North Atlantic colony. Our Bayesian analysis reveals varying degrees of synchrony in overall productivity, with a common signal indicating a significant decline in productivity between 1986 and 2009. Productivity in seabirds reflects conditions in the marine ecosystem so the estimated synchronous component is a useful indicator of local marine environment health. For the two species for which we have most data, the environmental contribution to overall productivity synchrony is driven principally by effects operating at the chick stage rather than during incubation. Our results emphasize the importance of studying together species that coexist in a community. The framework, which accommodates interspecific clutch-size variation, is readily applicable to any species assemblage in any ecosystem where long-term productivity data are available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/12-0500.1 | DOI Listing |