A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Natural Language Processing to identify pneumonia from radiology reports. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This study aimed to develop Natural Language Processing (NLP) approaches to supplement manual outcome validation, specifically to validate pneumonia cases from chest radiograph reports.

Methods: We trained one NLP system, ONYX, using radiograph reports from children and adults that were previously manually reviewed. We then assessed its validity on a test set of 5000 reports. We aimed to substantially decrease manual review, not replace it entirely, and so, we classified reports as follows: (1) consistent with pneumonia; (2) inconsistent with pneumonia; or (3) requiring manual review because of complex features. We developed processes tailored either to optimize accuracy or to minimize manual review. Using logistic regression, we jointly modeled sensitivity and specificity of ONYX in relation to patient age, comorbidity, and care setting. We estimated positive and negative predictive value (PPV and NPV) assuming pneumonia prevalence in the source data.

Results: Tailored for accuracy, ONYX identified 25% of reports as requiring manual review (34% of true pneumonias and 18% of non-pneumonias). For the remainder, ONYX's sensitivity was 92% (95% CI 90-93%), specificity 87% (86-88%), PPV 74% (72-76%), and NPV 96% (96-97%). Tailored to minimize manual review, ONYX classified 12% as needing manual review. For the remainder, ONYX had sensitivity 75% (72-77%), specificity 95% (94-96%), PPV 86% (83-88%), and NPV 91% (90-91%).

Conclusions: For pneumonia validation, ONYX can replace almost 90% of manual review while maintaining low to moderate misclassification rates. It can be tailored for different outcomes and study needs and thus warrants exploration in other settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811072PMC
http://dx.doi.org/10.1002/pds.3418DOI Listing

Publication Analysis

Top Keywords

manual review
28
natural language
8
language processing
8
manual
8
requiring manual
8
minimize manual
8
review
7
pneumonia
6
onyx
6
reports
5

Similar Publications