Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Sea anemones possess a number of peptide toxins that target ion channels which provide powerful tools to study the molecular basis of diverse signaling pathways. It is also acknowledged that currents through Erg1 K(+) channels in cardiac myocytes are important for electrical stability of the heart and alterations in its activity has been linked to the onset of a potentially life-threatening heart condition named long QT syndrome type 2. Here, we report that a crude extract from sea anemone Condylactis gigantea significantly increases the QT interval and has arrhythmogenic effects in the rat heart. Furthermore, a bioassay-guided purification procedure allowed the isolation of a chromatographic fraction containing a major component with a molecular mass of 4478 Da from the crude extract, which causes a significant inhibition of whole-cell patch-clamp currents through recombinant Erg1 channels, responsible of the rapid delayed rectifying current crucial for electrical activity in the heart. Further studies could provide relevant information on the molecular mechanism of C. gigantea peptide toxins which represent promising tools in studying the physiology of diverse ion channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2013.02.015 | DOI Listing |