Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Prostate cancer hypoxia is associated with inferior prognosis and resistance to treatment. The use of androgen deprivation therapy, both prior to and during radiotherapy, may exacerbate underlying hypoxia. Whilst larger radiation doses per fraction may achieve therapeutic gain, this is balanced by the reduced opportunity for re-oxygenation to take place during the course of treatment. Improving the underlying hypoxic tumour environment may therefore improve the treatment outcomes. Strategies to combat tumour hypoxia, with particular focus on the use of carbogen gas breathing concurrently with radiotherapy, is the subject of this review.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547529 | PMC |
http://dx.doi.org/10.1177/1756287212452195 | DOI Listing |