A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microspectroscopic SERS detection of interleukin-6 with rationally designed gold/silver nanoshells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationally designed gold/silver nanoshells (Au/Ag-NS) with plasmon resonances optimized for red laser excitation in order to minimize autofluorescence from clinical samples exhibit scattering cross-sections, which are ca. one order of magnitude larger compared with solid quasi-spherical gold nanoparticles (Au-NPs) of the same size. Hydrophilic stabilization and sterical accessibility for subsequent bioconjugation of Au/Ag-NS is achieved by coating their surface with a self-assembled monolayer (SAM) of rationally designed Raman reporter molecules comprising terminal mono- and tri-ethylene glycol (EG) spacers, respectively. The stability of the hydrophilically stabilized metal colloid was tested under different conditions. In contrast to metal colloids coated with a SAM without terminal EG spacers, the hydrophilically stabilized SERS particles do not aggregate under physiologically relevant conditions, i.e., buffer solutions with high ionic strength. Using these rationally designed SERS particles in conjunction with a microspectroscopic acquisition scheme, a sandwich immunoassay for the sensitive detection of interleukin-6 (IL-6) was developed. Several control experiments demonstrate the high specificity of the assay towards IL-6, with a lowest detectable concentration of ca. 1 pg mL(-1). The signal strength of the Au/Ag-NS is at least one order of magnitude higher compared with hydrophilically stabilized, non-aggregated solid quasi-spherical Au-NPs of the same size.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3an36610cDOI Listing

Publication Analysis

Top Keywords

rationally designed
16
hydrophilically stabilized
12
detection interleukin-6
8
designed gold/silver
8
gold/silver nanoshells
8
order magnitude
8
solid quasi-spherical
8
au-nps size
8
sers particles
8
microspectroscopic sers
4

Similar Publications