A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Targeting the deregulated spliceosome core machinery in cancer cells triggers mTOR blockade and autophagy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spliceosome is a large ribonucleoprotein complex that guides pre-mRNA splicing in eukaryotic cells. Here, we determine whether the spliceosome could constitute an attractive therapeutic target in cancer. Analysis of gene expression arrays from lung, breast, and ovarian cancers datasets revealed that several genes encoding components of the core spliceosome composed of a heteroheptameric Sm complex were overexpressed in malignant disease as compared with benign lesions and could also define a subset of highly aggressive breast cancers. siRNA-mediated depletion of SmE (SNRPE) or SmD1 (SNRPD1) led to a marked reduction of cell viability in breast, lung, and melanoma cancer cell lines, whereas it had little effect on the survival of the nonmalignant MCF-10A breast epithelial cells. SNRPE or SNRPD1 depletion did not lead to apoptotic cell death but autophagy, another form of cell death. Indeed, induction of autophagy was revealed by cytoplasmic accumulation of autophagic vacuoles and by an increase in both LC3 (MAP1LC3A) protein conversion and the amount of acidic autophagic vacuoles. Knockdown of SNRPE dramatically decreased mTOR mRNA and protein levels and was accompanied by a deregulation of the mTOR pathway, which, in part, explains the SNRPE-dependent induction of autophagy. These findings provide a rational to develop new therapeutic agents targeting spliceosome core components in oncology.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-12-2501DOI Listing

Publication Analysis

Top Keywords

spliceosome core
8
cell death
8
induction autophagy
8
autophagic vacuoles
8
spliceosome
5
targeting deregulated
4
deregulated spliceosome
4
core machinery
4
machinery cancer
4
cancer cells
4

Similar Publications