A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MyD88 is essential to sustain mTOR activation necessary to promote T helper 17 cell proliferation by linking IL-1 and IL-23 signaling. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Myeloid differentiation primary response protein 88 (MyD88) is classically known as an adaptor, linking TLR and IL-1R to downstream signaling pathways in the innate immune system. In addition to its role in innate immune cells, MyD88 has been shown to play an important role in T cells. How MyD88 regulates helper T-cell differentiation remains largely unknown, however. Here we demonstrate that MyD88 is an important regulator of IL-17-producing CD4(+) T helper cells (Th17) cell proliferation. MyD88-deficient CD4(+) T cells showed a defect in Th17 cell differentiation, but not in Th1 cell or Th2 cell differentiation. The impaired IL-17 production from MyD88-deficient CD4(+) T cells is not a result of defective RAR-related orphan receptor γt (RORγt) expression. Instead, MyD88 is essential for sustaining the mammalian target of rapamycin (mTOR) activation necessary to promote Th17 cell proliferation by linking IL-1 and IL-23 signaling. MyD88-deficient CD4(+) T cells showed impaired mTOR activation and, consequently, reduced Th17 cell proliferation. Importantly, the absence of MyD88 in T cells ameliorated disease in the experimental autoimmune encephalomyelitis model. Taken together, our results demonstrate that MyD88 has a dual function in Th17 cells by delivering IL-1 signaling during the early differentiation stage and integrating IL-23 signaling to the mTOR complex to expand committed Th17 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568327PMC
http://dx.doi.org/10.1073/pnas.1206048110DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
th17 cell
16
mtor activation
12
il-23 signaling
12
myd88-deficient cd4+
12
cd4+ cells
12
cells
9
myd88
8
myd88 essential
8
activation promote
8

Similar Publications