Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Atom-thick materials such as single-walled carbon nanotubes (SWCNTs) and graphene exhibit ultrahigh sensitivity to chemical perturbation partly because all of the constituent atoms are surface atoms. However, low selectivity due to nonspecific binding on the graphitic surface is a challenging issue to many applications including chemical sensing. Here, we demonstrated simultaneous attainment of high sensitivity and selectivity in thin-film field effect transistors (TFTs) based on outer-wall selectively functionalized double-walled carbon nanotubes (DWCNTs). With carboxylic acid functionalized DWCNT TFTs, we obtained excellent gate modulation (on/off ratio as high as 4000) with relatively high ON currents at a CNT areal density as low as 35 ng/cm(2). The devices displayed an NH(3) sensitivity of 60 nM (or ~1 ppb), which is comparable to small molecule aqueous solution detection using state-of-the-art SWCNT TFT sensors while concomitantly achieving 6000 times higher chemical selectivity toward a variety of amine-containing analyte molecules over that of other small molecules. These results highlight the potential of using covalently functionalized double-walled carbon nanotubes for simultaneous ultrahigh selective and sensitive detection of chemicals and illustrate some of the structural advantages of this double-wall materials strategy to nanoelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja310844u | DOI Listing |