A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Inositol pyrophosphate synthesis by inositol hexakisphosphate kinase 1 is required for homologous recombination repair. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (IP(7)), are water-soluble inositol phosphates that contain high energy diphosphate moieties on the inositol ring. Inositol hexakisphosphate kinase 1 (IP6K1) participates in inositol pyrophosphate synthesis, converting inositol hexakisphosphate (IP(6)) to IP(7). In the present study, we show that mouse embryonic fibroblasts (MEFs) lacking IP6K1 exhibit impaired DNA damage repair via homologous recombination (HR). IP6K1 knock-out MEFs show decreased viability and reduced recovery after induction of DNA damage by the replication stress inducer, hydroxyurea, or the radiomimetic antibiotic, neocarzinostatin. Cells lacking IP6K1 arrest after genotoxic stress, and markers associated with DNA repair are recruited to DNA damage sites, indicating that HR repair is initiated in these cells. However, repair does not proceed to completion because these markers persist as nuclear foci long after drug removal. A fraction of IP6K1-deficient MEFs continues to proliferate despite the persistence of DNA damage, rendering the cells more susceptible to chromosomal aberrations. Expression of catalytically active but not inactive IP6K1 can restore the repair process in knock-out MEFs, implying that inositol pyrophosphates are required for HR-mediated repair. Our study therefore highlights inositol pyrophosphates as novel small molecule regulators of HR signaling in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561551PMC
http://dx.doi.org/10.1074/jbc.M112.396556DOI Listing

Publication Analysis

Top Keywords

dna damage
16
inositol hexakisphosphate
12
inositol pyrophosphates
12
inositol
10
inositol pyrophosphate
8
pyrophosphate synthesis
8
hexakisphosphate kinase
8
homologous recombination
8
lacking ip6k1
8
knock-out mefs
8

Similar Publications