High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis.

Nucleic Acids Res

Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland.

Published: January 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches: strand-specific RNA-seq, to survey the global transcriptome, and ChIP-seq, to monitor the genome-wide dynamics of RNA polymerase (RNAP) and the anti-terminator NusA. Although NusA does not bind directly to DNA, but rather to RNAP and/or to the nascent transcript, we demonstrate that NusA interacts with RNAP ubiquitously throughout the chromosome, and that its profile mirrors RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the data sets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553938PMC
http://dx.doi.org/10.1093/nar/gks1260DOI Listing

Publication Analysis

Top Keywords

genome-wide dynamics
8
dynamics rna
8
rna polymerase
8
nusa
8
mycobacterium tuberculosis
8
rnap nusa
8
transcriptional units
8
rnap
6
transcriptional
5
high-resolution transcriptome
4

Similar Publications

Parasitoid wasps are major causes of mortality of many species, making host immune defences a common target of adaptive evolution, though such targets outside model species are poorly understood. In this study, we used two tests of positive selection to compare across three closely related Galerucella leaf beetles that show substantial differences in their phenotypic response to the shared parasitoid wasp Asecodes parviclava, their main natural enemy. Using a codon-based test, which detects excess amino acid fixations per locus along each species' lineage, we found more evidence of positive selection on parasitoid-relevant immune genes in the species with the strongest immunocompetence (G.

View Article and Find Full Text PDF

Meiotic crossovers promote correct chromosome segregation and the shuffling of genetic diversity. However, the measurement of crossovers remains challenging, impeding our ability to decipher the molecular mechanisms that are necessary for their formation and regulation. Here we demonstrate a novel repurposing of the single-nucleus Assay for Transposase Accessible Chromatin with sequencing (snATAC-seq) as a simple and high-throughput method to identify and characterize meiotic crossovers from haploid testis nuclei.

View Article and Find Full Text PDF

Environmental stressor-induced functional and expression dynamics of glutathione S-transferase genes in bees.

Pestic Biochem Physiol

November 2025

College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Vector Control and Utilization, Chongqing,

As key pollinators, bees are increasingly threatened by environmental stressors such as heavy metals, pesticides, and temperature fluctuations, which can cause oxidative stress and disrupt cellular homeostasis. Glutathione S-transferases (GSTs) play crucial roles in antioxidant defense and detoxification, yet systematic studies on bee GST families remain limited. Here, we conducted a genome-wide analysis of cytosolic GST genes in 13 bee species, identifying 146 genes in total.

View Article and Find Full Text PDF

The spatial organization and dynamics of a genome are central to gene regulation. While a comprehensive understanding of chromatin organization in the human nucleus has been achieved using fixed-cell methods, measuring the dynamics of specific genomic regions over extended periods in individual living cells remains challenging. Here, we present a robust and fully genetically encoded system for fluorescent labeling and long-term tracking of any accessible non-repetitive genomic locus in live human cells using fluorogenic and replenishable nanobody array fusions of the dCas9, and compact polycistronic single guide (sg)RNAs.

View Article and Find Full Text PDF

A subset of highly active chromosomal "hot zones" reproducibly positions adjacent to nuclear speckles (NS). Genes within these regions amplify their expression only with NS contact. However, gene expression differences inversely correlate with differences in NS distance, genome-wide.

View Article and Find Full Text PDF