98%
921
2 minutes
20
This work proposes a thermally rotatable grating that is based on hybrid-aligned cholesteric liquid crystals (HBA-cholesteric LCs). Experiments reveal that the HBA-cholesteric texture has a uniformly striped domain, which forms a grating, when the ratio of the cell gap to the helical pitch (d/p) is in the range of 2≤d/p≤3. The stripe direction of the HBA-cholesteric grating is predicted by the proposed vertically aligned LC layer model. The stripe direction of the HBA-cholesteric grating rotates continuously under thermal and electrical effects. Furthermore, the HBA-cholesteric grating has a larger rotational angle under the thermal effect (~101°) than under the electrical effect (~48°). Potential applications of the proposed thermally rotatable cholesteric grating for beam steering devices are emphasized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.026837 | DOI Listing |
Opt Express
November 2012
Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
This work proposes a thermally rotatable grating that is based on hybrid-aligned cholesteric liquid crystals (HBA-cholesteric LCs). Experiments reveal that the HBA-cholesteric texture has a uniformly striped domain, which forms a grating, when the ratio of the cell gap to the helical pitch (d/p) is in the range of 2≤d/p≤3. The stripe direction of the HBA-cholesteric grating is predicted by the proposed vertically aligned LC layer model.
View Article and Find Full Text PDF