98%
921
2 minutes
20
Cross-sensitization in the pelvis may contribute to etiology of functional pelvic pain disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increasing evidence suggests the involvement of transient receptor potential vanilloid 1 (TRPV1) receptors in the development of neurogenic inflammation in the pelvis and pelvic organ cross-sensitization. The objective of this study was to test the hypothesis that desensitization of TRPV1 receptors in the urinary bladder can minimize the effects of cross-sensitization induced by experimental colitis on excitability of bladder spinal neurons. Extracellular activity of bladder neurons was recorded in response to graded urinary bladder distension (UBD) in rats pretreated with intravesical resiniferatoxin (RTX, 10(-7)M). Colonic inflammation was induced by intracolonic instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The duration of excitatory responses to noxious UBD during acute colonic inflammation (3 days post-TNBS) was significantly shortened in the group with RTX pretreatment (25.3±1.5s, n=49) when compared to the control group (35.1±4.2s, n=43, p<0.05). The duration of long-lasting excitatory responses, but not short-lasting responses of bladder spinal neurons during acute colitis was significantly reduced by RTX from 52.9±6.6s (n=21, vehicle group) to 34.4±2.1s (RTX group, n=21, p<0.05). However, activation of TRPV1 receptors in the urinary bladder prior to acute colitis increased the number of bladder neurons receiving input from large somatic fields from 22.7% to 58.2% (p<0.01). The results of our study provide evidence that intravesical RTX reduces the effects of viscerovisceral cross-talk induced by colonic inflammation on bladder spinal neurons. However, RTX enhances the responses of bladder neurons to somatic stimulation, thereby limiting its therapeutic potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607291 | PMC |
http://dx.doi.org/10.1016/j.brainres.2012.11.003 | DOI Listing |
Toxins (Basel)
March 2025
Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
Resiniferatoxin (RTX), a potent capsaicin analog, is being investigated as a therapeutic agent for neurogenic conditions, particularly those affecting bladder control. However, the transcriptomic effects of RTX on the urinary bladder remain largely unexplored. This study aimed to characterize the transcriptomic changes in the porcine urinary bladder trigone region removed seven days post-treatment with intravesical RTX administration (500 nmol per animal in 60 mL of 5% aqueous solution of ethyl alcohol).
View Article and Find Full Text PDFInt J Mol Sci
October 2023
Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary.
Cells
January 2023
Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
Resiniferatoxin (RTX) is a potent capsaicin analog used as a drug for experimental therapy to treat neurogenic disorders associated with enhanced nociceptive transmission, including lower urinary tract symptoms. The present study, for the first time, investigated the transcriptomic profile of control and RTX-treated porcine urinary bladder walls. We applied multistep bioinformatics and discovered 129 differentially expressed genes (DEGs): 54 upregulated and 75 downregulated.
View Article and Find Full Text PDFFront Vet Sci
January 2023
ARK Animal Health, Sorrento Therapeutics, San Diego, CA, United States.
Objectives: To evaluate the safety of intravesical application of resiniferatoxin (RTX) in healthy cats and its effects on calcitonin gene-related peptide (CGRP) and substance P (SP) produced by C-fibers.
Methods: Seven adult female cats received either 25 mL of saline (control; = 1), or intravesical RTX at 5, 25, or 50 μg in 25 mL of saline to a final concentration of 0.2 μg/mL (318 nM), 1 μg/mL (1,591 nM), and 2 μg/mL (3,181 nM) ( = 2 per group).
Eur J Clin Pharmacol
June 2022
Department of Anesthesiology, West China Second Hospital, Sichuan University, Key Laboratory of Birth Deficits and Related Diseases of Women and Children, Sichuan University, Ministry of education, Renmin Nanlu, Chengdu, China.
Objective: Catheter-related bladder discomfort (CRBD) is a common complication of intraoperative urinary catheterization. Various studies have evaluated the efficacy of different interventions in postoperative CRBD. The present review was performed to assess the efficacy of these interventions.
View Article and Find Full Text PDF