98%
921
2 minutes
20
Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1-2914 days after a diet shift in captivity. Half-life values for (15)N turnover in white muscle and liver were 167 and 86 days, and for (13)C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ(15)N and 1.8 and 1.2‰ for δ(13)C, respectively. Our results demonstrate that turnover of (15)N and (13)C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. (15)N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ(15)N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492276 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049220 | PLOS |
J Voice
September 2025
Research and Development, Complete Vocal Institute, Kompagnistraede 32A, 1208, Copenhagen K, Denmark. Electronic address:
Aims And Objectives: Primary muscle tension dysphonia (pMTD) is a common cause of voice disorders and is treated by speech and language pathologists (SLPs). Some singing teachers specializing in the habilitation of the performance voice also have rehabilitation skills helping singers recover from illness. The aim of this pilot study was to assess the feasibility and acceptability of using a structured and well-characterized habilitation and rehabilitation pedagogic technique for singers, The Complete Vocal Technique (CVT), in the treatment of patients with speaking voice problems due to pMTD.
View Article and Find Full Text PDFJ Lipid Res
September 2025
Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Electronic address:
In an interplay with parenchymal cells of metabolically active organs such as heart and adipose tissues, vascular endothelial cells are important for the regulation of nutrient uptake and organ-specific energy metabolism. Based on high expression of the scavenger receptor B1 (SR-B1) in capillary endothelial cells of white and brown adipose tissue (BAT), we proposed a functional role for this receptor in lipid handling and adaptive thermogenesis. To address this hypothesis, we generated mice with an endothelial-specific knockout of SR-B1 and performed metabolic turnover and indirect calorimetry studies in response to environmental cues such as cold exposure and high fat diet feeding.
View Article and Find Full Text PDFUltrasound Q
December 2025
Department of Radiology, Mayo Clinic, Jacksonville, FL.
Idiopathic scrotal calcinosis (ISC) is a rare, benign dermatological condition consisting of deposits of calcium within the scrotal skin. On examination, ISC is characterized by painless, firm nodules and papules localized to the scrotal skin. Typically presenting in adolescence or early adulthood, ISC is more prevalent in males aged 20 to 40, though cases have been reported across all age groups.
View Article and Find Full Text PDFNeurol Genet
October 2025
Department of Neurology, National Taiwan University Hospital, Taipei.
Background And Objectives: Vascular NOTCH3 extracellular domain (NOTCH3ECD) deposition is the pathologic hallmark of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aimed to explore the relationships among the NOTCH3ECD deposition load, the variant genotype, and cerebral small vessel disease (SVD) severity.
Methods: Fifty-four individuals carrying pathogenic variants were enrolled and underwent skin biopsy for the quantification of dermal vascular NOTCH3ECD deposition load using immunohistochemical staining.
Biology (Basel)
July 2025
Department of Ocean Sciences, Inha University, Incheon 22212, Republic of Korea.
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (), individuals were exposed to vibrations at 120 Hz and 250 Hz (~100 dB re 1 µm/s), and physiological indicators were measured. Lactate and ATP concentrations in the leg muscle were measured, and heat shock protein 70 kDa (HSP70) gene expression in the hepatopancreas was analyzed using RT-PCR with newly designed primers.
View Article and Find Full Text PDF