Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Object: The aim in this study was to determine whether granulocyte-macrophage colony-stimulating factor (GM-CSF) leads to sensory improvement in rat spinal cord injury (SCI) models.
Methods: Thirty male Sprague-Dawley rats were included in this study: 10 in the sham group (laminectomy alone without SCI), 10 in the SCI group (SCI treated with phosphate-buffered saline), and 10 in the GM-CSF treatment group (SCI treated with GM-CSF). A locomotor function test and pain sensitivity test were conducted weekly for 9 weeks after SCI or sham injury. Spinal tissue samples from all rats were immunohistochemically examined for the expression of calcitonin gene-related peptide (CGRP) and abnormal sprouting at Week 9 post-SCI.
Results: Granulocyte-macrophage colony-stimulating factor treatment improves functional recovery after SCI. In the tactile withdrawal threshold and frequency of the hindlimb paw, the GM-CSF group always responded with a statistically significant lower threshold than the SCI group 9 weeks after SCI (p < 0.05). The response of the forelimb and hindlimb paws to cold in the GM-CSF group always reflected a statistically significant lower threshold than in the SCI group 9 weeks after injury (p < 0.05). Decreased CGRP expression, observed by density and distribution area, was noted in the GM-CSF group (optical density 113.5 ± 20.4) compared with the SCI group (optical density 143.1 ± 18.7; p < 0.05).
Conclusions: Treatment with GM-CSF results in functional recovery, improving tactile and cold sense recovery in a rat SCI model. Granulocyte-macrophage colony-stimulating factor also minimizes abnormal sprouting of sensory nerves after SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2012.9.SPINE1235 | DOI Listing |