A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3'-to-5' RNA exonuclease processing U6 small nuclear RNA. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clericuzio-type poikiloderma with neutropenia (PN) is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA) posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3' end polyuridine tails that are longer than those in normal cells and lack a terminal 2',3' cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3'-to-5' RNA exonuclease that removes uridines from U6 3' ends, generating terminal 2',3' cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3' end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2012.08.031DOI Listing

Publication Analysis

Top Keywords

nuclear rna
12
poikiloderma neutropenia
8
3'-to-5' rna
8
rna exonuclease
8
small nuclear
8
terminal 2'3'
8
2'3' cyclic
8
rna
6
mpn1
4
mpn1 mutated
4

Similar Publications