Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low-dose images obtained by electron cryo-microscopy (cryo-EM) are often affected by blurring caused by sample motion during electron beam exposure, degrading signal especially at high resolution. We show here that we can align frames of movies, recorded with a direct electron detector during beam exposure of rotavirus double-layered particles, thereby greatly reducing image blurring caused by beam-induced motion and sample stage instabilities. This procedure increases the efficiency of cryo-EM imaging and enhances the resolution obtained in three-dimensional reconstructions of the particle. Using movies in this way is generally applicable to all cryo-EM samples and should also improve the performance of midrange electron microscopes that may have limited mechanical stability and beam coherence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510009PMC
http://dx.doi.org/10.1016/j.str.2012.08.026DOI Listing

Publication Analysis

Top Keywords

electron cryo-microscopy
8
blurring caused
8
beam exposure
8
electron
5
movies ice-embedded
4
ice-embedded particles
4
particles enhance
4
enhance resolution
4
resolution electron
4
cryo-microscopy low-dose
4

Similar Publications

State-of-the-Art and Future Directions in Structural Proteomics.

Mol Cell Proteomics

September 2025

Institute of Biotechnology, HiLIFE, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Electronic address:

Structural proteomics has undergone a profound transformation, driven by the convergence of advanced experimental methodologies and computational innovations. Cutting-edge mass spectrometry (MS)-based approaches, including cross-linking MS (XL-MS), hydrogen-deuterium exchange MS (HDX-MS), and limited proteolysis MS (LiP-MS), now enable unprecedented insights into protein topology, conformational dynamics, and protein-protein interactions. These methods, complemented by affinity purification (AP), co-immunoprecipitation (co-IP), proximity labeling (PL), and spatial proteomics techniques, have expanded our ability to characterize the structural proteome at a systems-wide scale.

View Article and Find Full Text PDF

Understanding the intracellular fate of nanoparticles (NPs) is essential for advancing nanomedicine, particularly in targeted drug delivery for cancer therapy. Here, we present a complementary cryogenic microscopy workflow across scales to investigate the uptake and subcellular localization of zirconyl-containing inorganic-organic hybrid nanoparticles (IOH-NPs) in murine breast cancer cells. Our approach integrates cryogenic fluorescence microscopy (cryo-FM), cryo-focused ion beam scanning electron microscopy (cryo-FIBSEM), and cryo-soft X-ray tomography (cryo-SXT), enabling molecular specificity, high-resolution imaging, and volumetric ultrastructural analysis in near-native cellular states.

View Article and Find Full Text PDF

Although the Haber-Bosch process for industrial ammonia production is hailed by many as one of the most influential breakthroughs of the 20th century, its decarbonization and decentralization remain a critical challenge. One of the most promising and fast improving approaches is electrochemical nitrogen reduction mediated by lithium. However, the impact of electrolyte configuration on the formation of the solid electrolyte interphase (SEI) and its effect on selective nitrogen reduction is still elusive.

View Article and Find Full Text PDF

Antibody-mediated TGF-β1 activation for the treatment of diseases caused by deleterious T cell activity.

Cell Rep

August 2025

de Duve Institute, UCLouvain, 1200 Brussels, Belgium; WELBIO Department, WEL Research Institute, 1300 Wavre, Belgium. Electronic address:

Transforming growth factor β1 (TGF-β1) is an immunosuppressive cytokine produced as a latent homodimer, in which mature TGF-β1 is encapsulated and kept inactive by the latency-associated peptide (LAP). The transmembrane protein GARP presents latent TGF-β1 on the surface of regulatory T cells (Tregs) to enable activation and release of mature TGF-β1 by integrins. Here, we derived monoclonal antibodies (mAbs) that activate latent TGF-β1 anchored on cells by a transmembrane protein.

View Article and Find Full Text PDF

Influenza B viruses are antigenically diverse and contribute significantly to the annual influenza burden. Here we report influenza B virus neutralizing single-domain antibodies that target highly conserved regions of the hemagglutinin and neuraminidase. Structural studies by single particle electron cryo-microscopy (cryo-EM) revealed that one of these single-domain antibodies prevents the conformational transition of the viral hemagglutinin to the post-fusion state by targeting a quaternary epitope spanning two protomers in the hemagglutinin-stem region.

View Article and Find Full Text PDF