98%
921
2 minutes
20
Multiple epidemiologic studies demonstrate associations between chronic beryllium disease (CBD), beryllium sensitization (BeS), and HLA-DPB1 alleles with a glutamic acid residue at position 69 (E69). Results suggest that the less-frequent E69 variants (non-*0201/*0202 alleles) might be associated with greater risk of CBD. In this study, we sought to define specific E69-carrying alleles and their amino acid sequences in the DP peptide binding groove, as well as their relationship to CBD and BeS risk, using the largest case control study to date. We enrolled 502 BeS/CBD subjects and 653 beryllium-exposed controls from three beryllium industries who gave informed consent for participation. Non-Hispanic white cases and controls were frequency-matched by industry. HLA-DPB1 genotypes were determined using sequence-specific primer PCR. The E69 alleles were tested for association with disease individually and grouped by amino acid structure using logistic regression. The results show that CBD cases were more likely than controls to carry a non-*02 E69 allele than an *02 E69, with odds ratios (95% confidence interval) ranging from 3.1 (2.1-4.5) to 3.9 (2.6-5.9) (p < 0.0001). Polymorphic amino acids at positions 84 and 11 were associated with CBD: DD versus GG, 2.8 (1.8-4.6), p < 0.0001; GD versus GG, 2.1 (1.5-2.8), p < 0.0001; LL versus GG, 3.2 (1.8-5.6), p < 0.0001; GL versus GG, 2.8 (2.1-3.8), p < 0.0001. Similar results were found within the BeS group and CBD/BeS combined group. We conclude that the less frequent E69 alleles confer more risk for CBD than does *0201. Recent studies examining how the composition and structure of the binding pockets influence peptide binding in MHC genes, as well of studies showing the topology of the TCR to likely bind DPB1 preferentially, give plausible biological rationale for these findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347851 | PMC |
http://dx.doi.org/10.4049/jimmunol.1200798 | DOI Listing |
Comput Biol Med
September 2025
Institute of Biotechnology, Department of Medical Biotechnology, SIMATS Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India. Electronic address:
Small humanin-like peptide-6 (SHLP6), is derived from the mitochondrial genome. The 3D structure of SHLP6 was evaluated using PEPstr, with homology modeling predicting a Cyt-C structure with a DOPE score of -645.717 and a GA341 score of 0.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2025
Department of Radiology, The University of Chicago, Chicago, IL 60637, United States. Electronic address:
Murine double minute 2 (MDM2, also known as human double minute 2 or HDM2) is a negative regulator of the tumor suppressor protein p53 and is overexpressed in many cancers. Over the past two decades, substantial progress has been made in developing inhibitors of the MDM2-p53 interaction, thereby allowing the p53 protein to exert antitumor effects through cell apoptosis and cycle arrest. While there are currently no FDA-approved MDM2 inhibitors available, several small molecule MDM2 inhibitors and a stapled peptide inhibitor of the MDM2-p53 interaction are in clinical development.
View Article and Find Full Text PDFPhytomedicine
August 2025
Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Background: Stress is a prevalent mental health concern that often emerges in late adolescence or early adulthood. Since 2007, the Food and Drug Administration (FDA) has not approved any novel anxiolytic pharmaceuticals, leading to increased interest in nutritional supplements as alternative therapies for stress management.
Purpose: Building on our previous study, this work aims to investigate the synergistic effects of Theanine (Th) and Walnut Peptide (WP) on stress mitigation and cognitive enhancement.
Bioorg Chem
September 2025
Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata 700109, West Bengal, India; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy. Electronic address:
Dipeptidyl peptidase-4 (DPP-4) is a multifaceted enzyme that orchestrates a variety of physiological and pathological processes, making it a pivotal target in the treatment of several diseases. Notably, the role of DPP-4 extends beyond its well-documented involvement in glucose metabolism and type 2 diabetes mellitus (T2DM) management, where DPP-4 inhibitors (gliptins) have gained prominence. Emerging evidence highlights its significant functions in immune regulation, cardiovascular diseases, cancer, and inflammatory disorders.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address:
Alzheimer's disease (AD) is marked by amyloid-beta (Aβ) plaque buildup, tau hyperphosphorylation, neuroinflammation, neuronal loss, and impaired adult hippocampal neurogenesis (AHN). Taurine has shown protective effects in various cellular and animal models of AD, though the molecular mechanisms of free taurine and its effects in patient-derived models remain underexplored. This study evaluates taurine's therapeutic potential using integrated in silico, in vitro, in vivo, and ex vivo approaches.
View Article and Find Full Text PDF