Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A unique coupling between HCN1 and stereociliary tip-link protein protocadherin 15 has been described for a teleost vestibular hair-cell model and mammalian organ of Corti (OC) (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238). We now show that Ca(2+)-dependent interaction of the organ of Corti HCN1 and protocadherin 15 CD3 is mediated by amino-terminal sequence specific to HCN1 and is not replicated by analogous specific peptides for HCN2 or HCN4 nor by amino-terminal sequence conserved across HCN isoforms utilized in channel formation. Furthermore, the HCN1-specific peptide binds both phosphatidylinositol (3,4,5)-trisphosphate and phosphatidylinositol (4,5)-bisphosphate but not phosphatidylinositol 4-phosphate. Singly isolated cochlear inner and outer hair cells express HCN1 transcript, and HCN1 and HCN2 protein is immunolocalized to hair-cell stereocilia by both z-stack confocal and pre-embedding EM immunogold microscopy, with stereociliary tip-link and subcuticular plate sites. Quantitative PCR indicates HCN1/HCN2/HCN3/HCN4 = 9:9:1:89 in OC of the wild-type mouse, with HCN4 protein primarily attributable to inner sulcus cells. A mutant form of HCN1 mRNA and protein is expressed in the OC of an HCN1 mutant, corresponding to a full-length sequence with the in-frame deletion of pore-S6 domains, predicted by construct. The mutant transcript of HCN1 is ∼9-fold elevated relative to wild-type levels, possibly representing molecular compensation, with unsubstantial changes in HCN2, HCN3, and HCN4. Immunoprecipitation protocols indicate alternate interactions of full-length proteins; HCN1 can interact with protocadherin 15 CD3 and F-actin-binding filamin A forming a complex that does not include HCN2, or HCN1 can interact with HCN2 forming a complex without protocadherin 15 CD3 but including F-actin-binding fascin-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488041PMC
http://dx.doi.org/10.1074/jbc.M112.375832DOI Listing

Publication Analysis

Top Keywords

protocadherin cd3
16
hcn1
12
hcn1 hcn2
8
hair cells
8
complex protocadherin
8
cd3 f-actin-binding
8
f-actin-binding filamin
8
interact hcn2
8
stereociliary tip-link
8
organ corti
8

Similar Publications

Selective binding and transport of protocadherin 15 isoforms by stereocilia unconventional myosins in a heterologous expression system.

Sci Rep

August 2022

Laboratory of Cell Structure and Dynamics, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.

During hair cell development, the mechanoelectrical transduction (MET) apparatus is assembled at the stereocilia tips, where it coexists with the stereocilia actin regulatory machinery. While the myosin-based tipward transport of actin regulatory proteins is well studied, isoform complexity and built-in redundancies in the MET apparatus have limited our understanding of how MET components are transported. We used a heterologous expression system to elucidate the myosin selective transport of isoforms of protocadherin 15 (PCDH15), the protein that mechanically gates the MET apparatus.

View Article and Find Full Text PDF

Protocadherin 15 (PCDH15) is required for mechanotransduction in sensory hair cells as a component of the tip link. Isoforms of PCDH15 differ in their cytoplasmic domains (CD1, CD2, and CD3), but share the extracellular and transmembrane (TMD) domains, as well as an intracellular domain known as the common region (CR). In heterologous expression systems, both the TMD and CR of PCDH15 have been shown to interact with members of the mechanotransduction complex.

View Article and Find Full Text PDF

The tip link protein protocadherin 15 (PCDH15) is a central component of the mechanotransduction complex in auditory and vestibular hair cells. PCDH15 is hypothesized to relay external forces to the mechanically gated channel located near its cytoplasmic C terminus. How PCDH15 is coupled to the transduction machinery is not clear.

View Article and Find Full Text PDF

The CD2 isoform of protocadherin-15 is an essential component of the tip-link complex in mature auditory hair cells.

EMBO Mol Med

July 2014

Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France Université Pierre et Marie Curie (Paris VI), Paris, France Syndrome de Usher et autres Atteintes Rétino-Cochléaires, I

Protocadherin-15 (Pcdh15) is a component of the tip-links, the extracellular filaments that gate hair cell mechano-electrical transduction channels in the inner ear. There are three Pcdh15 splice isoforms (CD1, CD2 and CD3), which only differ by their cytoplasmic domains; they are thought to function redundantly in mechano-electrical transduction during hair-bundle development, but whether any of these isoforms composes the tip-link in mature hair cells remains unknown. By immunolabelling and both morphological and electrophysiological analyses of post-natal hair cell-specific conditional knockout mice (Pcdh15ex38-fl/ex38-fl Myo15-cre+/-) that lose only this isoform after normal hair-bundle development, we show that Pcdh15-CD2 is an essential component of tip-links in mature auditory hair cells.

View Article and Find Full Text PDF

Previously, we obtained evidence for a photoreceptor/olfactory type of CNGA3 transcript in a purified teleost vestibular hair cell preparation with immunolocalization of CNGA3 protein to stereocilia of teleost vestibular and mammalian cochlear hair cells. The carboxyl terminus of highly Ca(2+)-permeable CNGA3 expressed in the mammalian organ of Corti and saccular hair cells was found to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a member of the elastin superfamily, also immunolocalizd to hair cell stereocilia (Selvakumar, D., Drescher, M.

View Article and Find Full Text PDF