Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutations of the cyclin-dependent kinase-like 5 (CDKL5) and netrin-G1 (NTNG1) genes cause a severe neurodevelopmental disorder with clinical features that are closely related to Rett syndrome, including intellectual disability, early-onset intractable epilepsy and autism. We report here that CDKL5 is localized at excitatory synapses and contributes to correct dendritic spine structure and synapse activity. To exert this role, CDKL5 binds and phosphorylates the cell adhesion molecule NGL-1. This phosphorylation event ensures a stable association between NGL-1 and PSD95. Accordingly, phospho-mutant NGL-1 is unable to induce synaptic contacts whereas its phospho-mimetic form binds PSD95 more efficiently and partially rescues the CDKL5-specific spine defects. Interestingly, similarly to rodent neurons, iPSC-derived neurons from patients with CDKL5 mutations exhibit aberrant dendritic spines, thus suggesting a common function of CDKL5 in mice and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485419PMC
http://dx.doi.org/10.1038/ncb2566DOI Listing

Publication Analysis

Top Keywords

ipsc-derived neurons
8
cdkl5
6
cdkl5 ensures
4
ensures excitatory
4
excitatory synapse
4
synapse stability
4
stability reinforcing
4
reinforcing ngl-1-psd95
4
ngl-1-psd95 interaction
4
interaction postsynaptic
4

Similar Publications

Phosphodiesterase 9 (PDE9) is an enzyme that hydrolyzes cyclic guanosine monophosphate (cGMP)-a second messenger that regulates neuronal plasticity and memory function. PDE9 inhibition has been shown to enhance cognitive function in rodents, underlining the potential of PDE9 inhibitors (PDE9Is) as novel therapeutics for cognitive dysfunction. Considering the critical role of nitric oxide (NO)-cGMP signaling cascade in acetylcholine (ACh) release, the combination of PDE9Is and acetylcholinesterase inhibitors may synergistically elevate ACh levels in the brain.

View Article and Find Full Text PDF

Sensory neurons shape local macrophage identity via TGF-β signaling.

Immunity

September 2025

Institute for Infection Control and Prevention, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center and Fa

Resident macrophages play integral roles in maintaining tissue homeostasis and function. In the skin, prenatally seeded, specialized macrophages patrol sensory nerves and contribute to their regeneration after injury. However, mechanisms underlying the long-lasting postnatal commitment of these nerve-associated macrophages remain largely elusive.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a CAG/polyglutamine (polyQ) repeat expansion disorder in which the mutant androgen receptor (AR) protein triggers progressive degeneration of the neuromuscular system in men. As the misfolded polyQ AR is the proximal mediator of toxicity, therapeutic efforts have focused on targeting the mutant protein, but these prior efforts have met with limited success in SBMA patients. Here, we examine the efficacy of small molecule AR proteolysis-targeting chimera (PROTAC) degraders that rapidly and potently promote AR ubiquitination and degradation by the proteasome.

View Article and Find Full Text PDF

Single-cell glycome and transcriptome profiling uncovers the glycan signature of each cell subpopulation of human iPSC-derived neurons.

Stem Cell Reports

August 2025

Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Electronic address:

Human induced pluripotent stem cell (iPSC)-derived neurons are often heterogeneous, posing challenges for disease modeling and cell therapy. We previously developed single-cell glycan and RNA sequencing (scGR-seq) to analyze the glycome and transcriptome simultaneously. Here, we applied scGR-seq to examine heterogeneous populations of human iPSC-derived neurons.

View Article and Find Full Text PDF

The non-polio enteroviruses enterovirus-D68 (EV-D68) and enterovirus-A71 (EV-A71) are highly prevalent and considered pathogens of increasing health concern. While most enterovirus infections are mild and self-limiting, severe complications ranging from meningitis, encephalitis, to acute flaccid paralysis can occur, especially in children and immunocompromised patients. Despite the global burden of neurological complications caused by EV-D68 and EV-A71, the underlying neuropathogenesis remains poorly understood.

View Article and Find Full Text PDF