98%
921
2 minutes
20
Rapid, quantitative detection of cell-secreted biomarker proteins with a low sample volume holds great promise to advance cellular immunophenotyping techniques for personalized diagnosis and treatment of infectious diseases. Here we achieved such an assay with the THP-1 human acute moncytic leukemia cell line (a model for human monocyte) using a highly integrated microfluidic platform incorporating a no-wash bead-based chemiluminescence immunodetection scheme. Our microfluidic device allowed us to stimulate cells with lipopolysaccharide (LPS), which is an endotoxin causing septic shock due to severely pronounced immune response of the human body, under a well-controlled on-chip environment. Tumor necrosis factor-alpha (TNF-α) secreted from stimulated THP-1 cells was subsequently measured within the device with no flushing process required. Our study achieved high-sensitivity cellular immunophenotyping with 20-fold fewer cells than current cell-stimulation assay. The total assay time was also 7 times shorter than that of a conventional enzyme-linked immunosorbent assay (ELISA). Our strategy of monitoring immune cell functions in situ using a microfluidic platform could impact future medical treatments of acute infectious diseases and immune disorders by enabling a rapid, sample-efficient cellular immunophenotyping analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508001 | PMC |
http://dx.doi.org/10.1039/c2lc40619e | DOI Listing |
Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.
View Article and Find Full Text PDFPharm Dev Technol
September 2025
School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, wenhua Road 103, Shenyang 110016, PR China.
Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
We report on the development of a robust microfluidic nozzle capable of generating replenishing liquid sheet targets with sub-micron thickness at up to kHz repetition rates, a λ/20 surface flatness over areas of at least 100 μm2, and in-vacuum dimensions of 6 × 1.5 mm2. The platform was evaluated for stability under hundreds of 4.
View Article and Find Full Text PDFLab Chip
September 2025
Institute of Integrated Research, Institute of Science Tokyo, R2-9, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa 226-8501, Japan.
Tunability in isolating target cells of varying sizes from complex heterogeneous samples is essential for biomedical research and diagnostics. However, conventional deterministic lateral displacement (DLD) systems lack flexibility due to their fixed critical diameters (). Here, we present a thermo-responsive DLD micropillar array that enables tunable cell separation by dynamically modulating through temperature control.
View Article and Find Full Text PDF