Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Invasion of human red blood cells by Plasmodium falciparum involves interaction of the merozoite form through proteins on the surface coat. The erythrocyte binding-like protein family functions after initial merozoite interaction by binding via the Duffy binding-like (DBL) domain to receptors on the host red blood cell. The merozoite surface proteins DBL1 and -2 (PfMSPDBL1 and PfMSPDBL2) (PF10_0348 and PF10_0355) are extrinsically associated with the merozoite, and both have a DBL domain in each protein. We expressed and refolded recombinant DBL domains for PfMSPDBL1 and -2 and show they are functional. The red cell binding characteristics of these domains were shown to be similar to full-length forms of these proteins isolated from parasite cultures. Futhermore, metal cofactors were found to enhance the binding of both the DBL domains and the parasite-derived full-length proteins to erythrocytes, which has implications for receptor binding of other DBL-containing proteins in Plasmodium spp. We solved the structure of the erythrocyte-binding DBL domain of PfMSPDBL2 to 2.09 Å resolution and modeled that of PfMSPDBL1, revealing a canonical DBL fold consisting of a boomerang shaped α-helical core formed from three subdomains. PfMSPDBL2 is highly polymorphic, and mapping of these mutations shows they are on the surface, predominantly in the first two domains. For both PfMSPDBL proteins, polymorphic variation spares the cleft separating domains 1 and 2 from domain 3, and the groove between the two major helices of domain 3 extends beyond the cleft, indicating these regions are functionally important and are likely to be associated with the binding of a receptor on the red blood cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463323PMC
http://dx.doi.org/10.1074/jbc.M112.350504DOI Listing

Publication Analysis

Top Keywords

red blood
12
dbl domain
12
duffy binding-like
8
merozoite surface
8
plasmodium falciparum
8
blood cell
8
dbl domains
8
domains
6
proteins
6
dbl
6

Similar Publications

Background: Vaccination is a key strategy to reduce infectious disease mortality. In pediatric heart transplant recipients (HTRs), the use of immunosuppressive therapy weakens immune responses, increasing the risk of viral infections. This study aimed to evaluate the immunogenicity of hepatitis B virus (HBV) revaccination in this vulnerable population.

View Article and Find Full Text PDF

Background: Improving efficiency and reducing turnaround time are crucial in clinical laboratories. While automated analyzers such as the Beckman Coulter DxH 900 streamline workflow, subtle abnormalities like blasts and immature granulocytes (IGs) may be missed, especially in the absence of WBC-related suspect messages. This study evaluated whether integrating cell population data (CPD) with instrument messages could enhance detection accuracy.

View Article and Find Full Text PDF

Current treatments for narcolepsy type 1 (NT1) have little impact on psychiatric, cognitive and metabolic comorbidities. Here, we evaluated the feasibility, safety and efficacy of a prospective Exercise Training (ET) program on sleep-related symptoms and comorbidities in NT1. Sedentary adult with NT1 participated in a 6-week supervised ET program followed by a 18-week self-directed program.

View Article and Find Full Text PDF

Erythropoiesis, i.e., process of red blood cell (RBC) production, is highly dependent on iron, with 60-70% of the total body iron incorporated into hemoglobin.

View Article and Find Full Text PDF

In the past decades, several authors have investigated the possibility that genome size is correlated with metabolic rates, obtaining conflicting results. The main biological explanation among the supporters of this correlation was related to the nucleotypic effect of the genome size, which, determining the cellular volume and hence the surface area-to-volume ratio, influences cellular metabolism. In the present study, I tested a different hypothesis: genome size, influencing red blood cell (RBC) volume, is correlated with capillary density and diameter.

View Article and Find Full Text PDF