Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Reprofiling of existing drugs to treat conditions not originally targeted is an attractive means of addressing the problem of a decreasing stream of approved drugs. To determine if 3D shape similarity can be used to rationalize an otherwise serendipitous process, we employed 3D shape-based virtual screening to reprofile existing FDA-approved drugs. The study was conducted in two phases. First, multiple histamine H(1) receptor antagonists were identified to be used as query molecules, and these were compared to a database of approved drugs. Second, the hits were ranked according to 3D similarity and the top drugs evaluated in a cell-based assay. The virtual screening methodology proved highly successful, as 13 of 23 top drugs tested selectively inhibited histamine-induced calcium release with the best being chlorprothixene (IC(50) 1 nM). Finally, we confirmed that the drugs identified using the cell-based assay were all acting at the receptor level by conducting a radioligand-binding assay using rat membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm300671m | DOI Listing |