98%
921
2 minutes
20
A bond-distance analysis has been undertaken to determine the protonation states of ionizable amino acids in trypsin, subtilisin and lysozyme. The diffraction resolutions were 1.2 Å for trypsin (97% complete, 12% H-atom visibility at 2.5σ), 1.26 Å for subtilisin (100% complete, 11% H-atom visibility at 2.5σ) and 0.65 Å for lysozyme (PDB entry 2vb1; 98% complete, 30% H-atom visibility at 3σ). These studies provide a wide diffraction resolution range for assessment. The bond-length e.s.d.s obtained are as small as 0.008 Å and thus provide an exceptional opportunity for bond-length analyses. The results indicate that useful information can be obtained from diffraction data at around 1.2-1.3 Å resolution and that minor increases in resolution can have significant effects on reducing the associated bond-length standard deviations. The protonation states in histidine residues were also considered; however, owing to the smaller differences between the protonated and deprotonated forms it is much more difficult to infer the protonation states of these residues. Not even the 0.65 Å resolution lysozyme structure provided the necessary accuracy to determine the protonation states of histidine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0907444912012589 | DOI Listing |
NMR Biomed
October 2025
Department of Radiology, University of California, San Diego, California, USA.
Myelin and myelin water (MW) behavior is becoming increasingly relevant in their role in neurodegenerative diseases. Myelin proton fraction (MPF) and myelin water fraction (MWF) measured with short-TR adiabatic inversion-recovery (STAIR) sequences are potential biomarkers of myelin and MW, respectively, but their repeatabilities are unknown. This study aims to evaluate the repeatability of MPF and MWF measured with the STAIR ultrashort echo time (STAIR-UTE) and STAIR short echo time (STAIR-STE) sequences, respectively.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; College of Aerospace Engineering, Nanjing University of Aerona
Ion adsorption at the solid-liquid interface of two-dimensional (2D) materials is ubiquitous and plays a pivotal role in interfacial physicochemical interactions. In practical applications, 2D materials are typically supported on solid substrates. Understanding the role of the supporting substrate is therefore critical for advancing our fundamental knowledge of interfacial interactions and downstream application success.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Brookhaven National Laboratory (BNL), Upton, New York 11973, USA.
This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This is the first measurement to use data from all five years of operation of the MicroBooNE experiment, corresponding to an exposure of 1.11×10^{21} protons on target, a 70% increase on past results.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Tokyo, Center for Nuclear Study, Wako, Saitama 351-0198, Japan.
The 247-keV state in ^{54}Sc, populated in the β decay of ^{54}Ca, is reported here as a nanosecond isomer with a half-life of 26.0(22) ns. The state is interpreted as the 1^{+} member of the πf_{7/2}⊗νf_{5/2} spin-coupled multiplet, which decays to the 3^{+},πf_{7/2}⊗νp_{1/2} ground state.
View Article and Find Full Text PDFCharged hadron elliptic anisotropies (v_{2}) are presented over a wide transverse momentum (p_{T}) range for proton-lead (pPb) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively.
View Article and Find Full Text PDF