A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Understanding the in-vivo relevance of S-nitrosothiols in insulin action. | LitMetric

Understanding the in-vivo relevance of S-nitrosothiols in insulin action.

Can J Physiol Pharmacol

CEDOC, Universidade Nova de Lisboa, Campo Mártires da Pátria, Portugal.

Published: July 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insulin sensitivity is maximal in the postprandial state, decreasing with a fasting period through a mechanism that is dependent on the integrity of the hepatic parasympathetic nerves/nitric oxide (NO) production and increased hepatic glutathione (GSH) levels. GSH and NO react to form S-nitrosoglutathione (GSNO), an S-nitrosothiol (RSNO) for which the in-vivo effects are still being determined. The goal of this study was to test the hypothesis that in-vivo administration of RSNOs, GSNO, or S-nitroso-N-acetylpenicillamine (SNAP) increases insulin sensitivity in fasted or fed-denervated animals, but not in fed animals, where full postprandial insulin sensitivity is achieved. Fasted, fed, or fed-denervated male Wistar rats were used as models for different insulin sensitivity conditions. The rapid insulin sensitivity test (RIST) was used to measure insulin-stimulated glucose disposal before and after drug administration (GSNO, SNAP, or 3-morpholinosydnonimine (SIN-1), intravenous (i.v.) or to the portal vein (i.p.v.)). Fast insulin sensitivity was not altered by administration of SIN-1 (neither i.v. nor i.p.v.). Intravenous infusion of RSNOs in fasted and fed hepatic denervated rats increased insulin sensitivity by 126.35% ± 35.43% and 82.7% ± 12.8%, respectively. In fed animals, RSNOs decreased insulin sensitivity indicating a negative feedback mechanism. These results suggest that RSNOs incremental effect on insulin sensitivity represent a promising therapeutical tool in insulin resistance states.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y2012-090DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
36
insulin
11
sensitivity
9
fed animals
8
fasted fed
8
understanding in-vivo
4
in-vivo relevance
4
relevance s-nitrosothiols
4
s-nitrosothiols insulin
4
insulin action
4

Similar Publications