98%
921
2 minutes
20
Objectives: The objective of this histologic study was to evaluate platelet-rich fibrin (PRF)-mixed tricalcium phosphate (TCP) and recombinant human bone morphogenic protein 2 (rhBMP-2)-coated TCP in their potential to enhance bone regeneration in sinus elevation in rabbits as well as in their inflammatory features.
Study Design: Bilateral round-shaped defects (diameter 8.0 mm) were formed in the maxillary anterior sinus walls of 36 New Zealand white rabbits. The defects were grafted with TCP only (control group), with rhBMP-2-coated TCP (experimental group A) and with PRF-mixed TCP (experimental group B). Each group included 12 rabbits. The animals were killed at 3 days, 1 week, 2 weeks, 4 weeks, 6 weeks, and 8 weeks. The specimens underwent decalcification and were stained for histologic analysis.
Results: There were no significant differences in inflammatory features among the groups at 3 days or the first week after operation. In a histomorphometric analysis, the new bone formation ratio showed significant differentiation between groups A and B. The TCP-only control group showed a relatively lower bone formation ratio rather than the experimental groups. The PRF-mixed TCP group showed a larger bone formation area, compared with both the control group and group A.
Conclusions: In the results of the histologic evaluation (hematoxylin-eosin, Masson trichrome stain), the experimental groups A and B showed rapid bone formation, remodeling, and calcification in the second week. Moreover, there was a significant difference between those experimental groups and the control group in the new bone formation area at the fourth, sixth, and eighth weeks. The PRF-mixed TCP showed more rapid bone healing than the rhBMP-2-coated TCP or the TCP-only control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tripleo.2011.04.029 | DOI Listing |
J Am Soc Nephrol
September 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.
Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.
Eur Arch Paediatr Dent
September 2025
Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, Brazil.
Purpose: This systematic review provides a critical evaluation, synthesis of the existing literature on isotretinoin's effects on craniomaxillofacial bone.
Methods: Following the PRISMA guidelines and registered in PROSPERO, the review was conducted in August 2024 across various databases. Eligible in vivo studies were analysed for their assessment of isotretinoin's effects on craniomaxillofacial bone.
Osteoporos Int
September 2025
Molecular Bone Histology Lab, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
Intermittent PTH treatment has been used as both an osteoanabolic treatment in osteoporosis and a hormone replacement in hypoparathyroidism for many years. This scoping review compiles and reinterprets studies using histomorphometry supported by bone turnover markers to investigate the elusive cellular effect of intermittent PTH treatment locally within the bone, while illuminating knowledge gaps. Intermittent PTH increases both osteoclast and osteoblast activity within the first 6 months of treatment.
View Article and Find Full Text PDFFASEB J
September 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
The onset and progression of periodontitis are closely related to metabolic reprogramming in the periodontal microenvironment, with osteoclasts playing a critical role in tissue destruction. Single-cell RNA sequencing (scRNA-seq) of periodontal tissues from healthy individuals and patients with severe chronic periodontitis revealed a significant increase in the expression of mitochondrial-related genes during osteoclast differentiation, suggesting the critical role of mitochondrial function in this process. This study investigates the potential of the novel mitoribosome-targeting antibiotic radezolid in inhibiting osteoclast differentiation.
View Article and Find Full Text PDFACS Synth Biol
September 2025
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.
View Article and Find Full Text PDF