98%
921
2 minutes
20
All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2012.03.019 | DOI Listing |
J Appl Physiol (1985)
September 2025
Ludwig Engel Centre for Respiratory Research, Westmead Hospital, Sydney, NSW, Australia.
Lung volume change modifies pharyngeal airway patency by altering breathing-related passive force transmission between lower and upper airways (via tracheal and other connections). We hypothesise that such force transmission may also impact active upper airway dilator muscle function by altering resting muscle length. The aim of this study was to determine the relationship between end expiratory lung volume (EELV) and ability of sternohyoid muscle (SH) contraction to alter pharyngeal airway patency.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
Shirley Ryan AbilityLab, Chicago, IL.
Spasticity results from upper motor neuron lesions and can create a deforming force, pain, and is often accompanied by contracture. While the origin of spasticity is neural, there is ample evidence of secondary muscle changes. Here we use direct measurement of the force-frequency relationship (FFR) to characterize human muscle's physiological properties.
View Article and Find Full Text PDFUnlabelled: As human skeletal muscle cellular and molecular contractile properties are temperature-sensitive, the ability to perform experiments at body temperature (∼37°C) may lead to a better understanding of their responses and potentially their effects upon whole-muscle and whole-body performance. We quantified molecular (myosin-actin cross-bridge mechanics and kinetics) and cellular (specific tension; force divided by cross-sectional area) function in slow-contracting myosin heavy chain (MHC) I and fast-contracting MHC IIA fibers from older adults (n=13, 8 female) at 37°C and compared these to results at 25°C. MHC I fibers were more temperature-sensitive than MHC IIA fibers, showing greater increases in cross-bridge kinetics (MHC I: 4.
View Article and Find Full Text PDFScience
September 2025
Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMC), Utrecht, Netherlands.
Cell extrusion is essential for homeostatic self-renewal of the intestinal epithelium. Extrusion is thought to be triggered by crowding-induced compression of cells at the intestinal villus tip. In this study, we found instead that a local "tug-of-war" competition between contractile cells regulated extrusion in the intestinal epithelium.
View Article and Find Full Text PDFPercept Mot Skills
September 2025
Division of Physical Therapy Science, Graduate Course of Health and Social Work, Kanagawa University of Human Services, Yokosuka, Japan.
The control of muscle relaxation is not simply the cessation of a muscle contraction, but a dynamic control mechanism for the next movement. Muscle relaxation is triggered by neurophysiological control of the central nervous system. Here, two relaxation strategies were compared, Ballistic and Ramp conditions, and the dynamics of excitability changes between the two relaxation strategies were analyzed.
View Article and Find Full Text PDF