Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: The reduced cardiac output (CO) secondary to increased acceleration forces (+Gz) has applicability to daily life and pathophysiology. Increased +Gz and reduced CO affect the lung, resulting in reduced oxygen transport. A variety of studies have examined tolerance to high +Gz.
Methods: The present study examines the effect of +1 to +3 Gz on steady-state cardiopulmonary variables at rest and while exercising at +2 Gz and +3 Gz. This study also looks at the deterioration of steady-state cardiopulmonary variables with sustained increased +Gz and after de-training in eight male centrifuge trained subjects.
Results: CO (-1.53 L x min(-1)/+Gz), stroke volume (-30 ml/+Gz, SV), and pulmonary diffusing capacity (-3.42 ml x mmHg(-1)/+Gz, DL(co)) decreased linearly with increased +Gz at rest while heart rate (23 bpm/+Gz, HR), total peripheral resistance (0.0095 TPRU/Gz TPR), mean arterial pressure (13.2 mmHg/+Gz, MAP), and ventilation (4.13 L x min(-1)/+Gz, V(E)) increased linearly. During graded exercise, CO and SV increased less at +2 Gz and +3 Gz while MAP and VE increased more. Failure to endure increased +Gz and the effects of de-training were primarily due to the inability to regulate MAP.
Discussion: The incremental increase in increased +Gz from 1 to 3 resulted in increased MAP, which was accomplished by increasing TPR sufficiently so as to offset the reduced CO. The effects of increased +Gz and reduced CO compromised lung function and oxygen transport (-18-30%), thus compromising exercise capacity. The failure to regulate MAP at lower increased +Gz levels resulted in intolerance to higher increased +Gz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3357/asem.3127.2012 | DOI Listing |