A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ability to accurately predict the toxicity of drug candidates from their chemical structure is critical for guiding experimental drug discovery toward safer medicines. Under the guidance of the MetaTox consortium (Thomson Reuters, CA, USA), which comprised toxicologists from the pharmaceutical industry and government agencies, we created a comprehensive ontology of toxic pathologies for 19 organs, classifying pathology terms by pathology type and functional organ substructure. By manual annotation of full-text research articles, the ontology was populated with chemical compounds causing specific histopathologies. Annotated compound-toxicity associations defined histologically from rat and mouse experiments were used to build quantitative structure-activity relationship models predicting subcategories of liver and kidney toxicity: liver necrosis, liver relative weight gain, liver lipid accumulation, nephron injury, kidney relative weight gain, and kidney necrosis. All models were validated using two independent test sets and demonstrated overall good performance: initial validation showed 0.80-0.96 sensitivity (correctly predicted toxic compounds) and 0.85-1.00 specificity (correctly predicted non-toxic compounds). Later validation against a test set of compounds newly added to the database in the 2 years following initial model generation showed 75-87% sensitivity and 60-78% specificity. General hepatotoxicity and nephrotoxicity models were less accurate, as expected for more complex endpoints.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1747-0285.2012.01411.xDOI Listing

Publication Analysis

Top Keywords

relative weight
8
weight gain
8
correctly predicted
8
prediction organ
4
organ toxicity
4
toxicity endpoints
4
endpoints qsar
4
qsar modeling
4
modeling based
4
based precise
4

Similar Publications