Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure.

Cytoskeleton (Hoboken)

Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, USA.

Published: August 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423584PMC
http://dx.doi.org/10.1002/cm.21035DOI Listing

Publication Analysis

Top Keywords

image averaging
12
human cilia
8
cilia chlamydomonas
8
chlamydomonas flagella
8
similarities differences
8
highly conserved
8
basic axonemal
8
axonemal structure
8
differences
6
structure
5

Similar Publications

For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".

View Article and Find Full Text PDF

Purpose: Bronchiolar adenoma (BA) is a rare benign pulmonary neoplasm originating from the bronchial mucosal epithelium and mimics lung adenocarcinoma (LAC) both radiographically and microscopically. This study aimed to develop a nomogram for distinguishing BA from LAC by integrating clinical characteristics and artificial intelligence (AI)-derived histogram parameters across two medical centers.

Methods: This retrospective study included 215 patients with diagnoses confirmed by postoperative pathology from two medical centers.

View Article and Find Full Text PDF

Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.

View Article and Find Full Text PDF

Objective: This study presents a comparative analysis of outcomes of lateral orbital wall decompression performed using ultrasonic bone removal with standard and modified techniques.

Material And Methods: The study included 78 patients (109 orbits) with exophthalmos without visual impairment (subgroups 1A and 1B) and with optic neuropathy (ON) due to thyroid eye disease (TED) (subgroups 2A and 2B). Lateral wall decompression (LWD) was performed using ultrasonic bone removal with a modified (=58, patient subgroups 1A and 2A) or standard (=51, subgroups 1B and 2B) technique.

View Article and Find Full Text PDF

Purpose: To objectively quantify, in East Asians and Caucasians, the width and distribution of the retro-orbicularis oculi and frontalis fat (ROOF) pad, subcutaneous fat, and orbicularis oculi muscle (OOM) at the superior orbital rim margin as well as 5 mm superior and inferior to this point.

Methods: Thirty adults were studied by high-resolution, surface coil MRI. In the quasi-sagittal image through the globe center, the ROOF, subcutaneous fat, and OOM thickness were measured anterior to the orbital septum, at 3 points: at the superior orbital rim, and 5 mm superior, and 5 mm inferior to the rim.

View Article and Find Full Text PDF