Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The nonpeptide AVE0991 is an agonist of the angiotensin-(1-7) (Ang-(1-7)) Mas receptor and is expected to be a putative new drug for treatment of cardiovascular disease. However, the mechanisms involved in the antiproliferative effects of AVE0991 are not fully understood. We saw that the compound attenuated proliferation in an angiotensin II-induced rat vascular smooth muscle cells (VSMC) proliferation model. Moreover, treatment with AVE0991 (10(-5) mol/L or 10(-7) mol/L) significantly attenuated reactive oxygen species (ROS) production, phosphorylation of p38 MAPK, and dose-dependently (10(-8) to 10(-5) mol/L) inhibited Ang II-induced VSMC proliferation. Meanwhile, heme oxygenase-1 (HO-1) expression increased in the AVE0991 + Ang II group (10(-5) mol/L or 10(-6) mol/L). However, the beneficial effects of AVE0991 were completely abolished when the VSMC were pretreated with A-779 (10(-6) mol/L). Furthermore, treatment with the HO-1 inhibitor ZnPPIX attenuated the inhibitory effect of AVE0991 on Ang II-induced p38MAPK phosphorylation. These results suggest that AVE0991 attenuates Ang II-induced VSMC proliferation in a dose-dependent fashion and that this effect is associated with the Mas/HO-1/p38 MAPK signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299313PMC
http://dx.doi.org/10.1155/2012/958298DOI Listing

Publication Analysis

Top Keywords

vsmc proliferation
12
ang ii-induced
12
ave0991
8
angiotensin ii-induced
8
vascular smooth
8
smooth muscle
8
heme oxygenase-1
8
effects ave0991
8
ii-induced vsmc
8
ave0991 ang
8

Similar Publications

FPR2 Agonism Attenuates Restenosis by Mitigating Neointimal Hyperplasia via ELOVL6.

FASEB J

September 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Restenosis following endovascular intervention in lower extremity arterial disease contributes to significant morbidity and mortality. This study investigates the role of formylpeptide receptor 2 (FPR2) in neointimal hyperplasia and evaluates the therapeutic potential of the selective FPR2 agonist BMS-986235 in mitigating restenosis. FPR2 expression was significantly reduced in the popliteal and anterior tibial arteries of male amputees with restenosis compared to healthy controls.

View Article and Find Full Text PDF

Introduction: Abdominal aortic aneurysm (AAA) is a multifactorial disease with limited identification of contributing genetic factors. p27kip, also known as CDKN1B, is a cell cycle inhibitor that regulates vascular smooth muscle cells (VSMCs) and macrophages (Mϕ). The role of p27 in AAA development was assessed by AAA induction in p27 knockout (p27-/-) and WT mice.

View Article and Find Full Text PDF

The proliferation and migration of vascular smooth muscle cells (VSMCs) are the initial contributors to restenosis in patients undergoing percutaneous coronary intervention (PCI). MicroRNA-145 (miR-145) plays a significant role in this pathological process. Although carvedilol has been shown to inhibit VSMC proliferation and migration, the underlying mechanisms are not fully understood.

View Article and Find Full Text PDF

Background: The occurrence of aneurysms is closely related to the growth and inflammatory response of vascular smooth muscle cells (VSMCs). The regulatory mechanism of ACTN2 in intracranial aneurysms (IA) has not yet been fully elucidated. This study aims to reveal the role of the PRDM9-ACTN2-PDLIM1 axis in the progression of aneurysms and its impact on VSMCs.

View Article and Find Full Text PDF

Background And Aims: Neointimal hyperplasia is a key pathology in Type 2 Diabetes Mellitus (T2DM) vascular complications. It involves phenotypic switching of vascular smooth muscle cells (VSMCs) triggered by hyperglycemia, though the exact mechanisms remain unclear.

Methods: We employed Twist1 vascular smooth muscle-specific knockout mice with carotid artery ligation in a T2DM model to study Twist1's role in diabetic neointimal hyperplasia.

View Article and Find Full Text PDF