98%
921
2 minutes
20
The immobilization of β-lactoglobulin-B (BLG-B) onto the amine-functionalized KIT-6 [n-PrNH(2)-KIT-6], which has average pore diameter around 6.5 nm, was studied. [n-PrNH(2)-KIT-6] proved to be highly effective agent for BLG-B adsorption. UV-visible spectroscopy studies demonstrated that the immobilized BLG-B was less prone to thermally induced aggregation than the free protein. Circular dichroism (CD) spectra of free and immobilized BLG-B were recorded and significant differences in both the backbone and aromatic regions of the spectra were observed upon thermic stress. The obtained results showed that structural elements of the immobilized BLG-B are kept strongly together, making the protein more resistant to heat denaturation. The melting temperatures of the free and immobilized BLG-B were measured by far-UV CD, which showed 19 °C higher heat resistance of the immobilized BLG-B compared with its free form. Acrylamide quenching of fluorescence of free and immobilized forms of BLG-B as a function of temperature revealed that the immobilized BLG-B was more resistant to Trp quenching. Therefore immobilization of BLG-B onto [n-PrNH(2)-KIT-6] is accompanied by favorable structural stability of BLG-B in the confined space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2012.02.006 | DOI Listing |
Int J Mol Sci
July 2015
Department of Nanotechnology, Faculty of Advance Science and Technology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran P. O. Box: 193956466, Iran.
In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs) on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B) was investigated. For this purpose, non-functionalized (KIT-6) and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6]) nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles.
View Article and Find Full Text PDFBiophys Chem
May 2012
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
The immobilization of β-lactoglobulin-B (BLG-B) onto the amine-functionalized KIT-6 [n-PrNH(2)-KIT-6], which has average pore diameter around 6.5 nm, was studied. [n-PrNH(2)-KIT-6] proved to be highly effective agent for BLG-B adsorption.
View Article and Find Full Text PDF