Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The atmospheric pressure on Mars ranges from 1-10 mbar, about 1% of Earth pressure (∼1013 mbar). Low pressure is a growth-inhibitory factor for terrestrial microorganisms on Mars, and a putative low-pressure barrier for growth of Earth bacteria of ∼25 mbar has been postulated. In a previous communication, we described the isolation of a strain of Bacillus subtilis that had evolved enhanced growth ability at the near-inhibitory low pressure of 50 mbar. To explore mechanisms that enabled growth of the low-pressure-adapted strain, numerous genes differentially transcribed between the ancestor strain WN624 and low-pressure-evolved strain WN1106 at 50 mbar were identified by microarray analysis. Among these was a cluster of three candidate genes (des, desK, and desR), whose mRNA levels in WN1106 were higher than the ancestor on the microarrays. Up-regulation of these genes was confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The des, desK, and desR genes encode the Des membrane fatty acid (FA) desaturase, the DesK sensor kinase, and the DesR response regulator, respectively, which function to maintain membrane fluidity in acute response to temperature downshift. Pressure downshift caused an up-regulation of des mRNA levels only in WN1106, but expression of a des-lacZ transcriptional fusion was unaffected, which suggests that des regulation was different in response to temperature versus pressure downshift. Competition experiments showed that inactivation of the des gene caused a slight, but statistically significant, loss of fitness of strain WN1106 at 50 mbar. Further, analysis of membrane FA composition of cells grown at 1013 versus 50 mbar revealed a decrease in the ratio of unsaturated to saturated FAs but an increase in the ratio of anteiso- to iso-FAs. The present study represents a first step toward identification of molecular mechanisms by which B. subtilis could sense and respond to the novel environmental stress of low pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2011.0728 | DOI Listing |