Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sleep is a complex state characterized by important changes in the autonomic modulation of the cardiovascular activity. Heart rate variability (HRV) greatly changes during different sleep stages, showing a predominant parasympathetic drive to the heart during non-rapid eye movement (NREM) sleep and an increased sympathetic activity during rapid eye movement (REM) sleep. Respiration undergoes important modifications as well, becoming deeper and more regular with deep sleep and shallower and more frequent during REM sleep. The aim of the present study is to assess both autonomic cardiac regulation and cardiopulmonary coupling variations during different sleep stages in healthy subjects, using spectral and cross-spectral analysis of the HRV and respiration signals. Polysomnographic sleep recordings were performed in 11 healthy women and the HRV signal and the respiration signal were obtained. The spectral and cross-spectral parameters of the HRV signal and of the respiration signal were computed at low frequency and at breathing frequency (high frequency, HF) during different sleep stages. Results attested a sympatho-vagal balance shift toward parasympathetic modulation during NREM sleep and toward sympathetic modulation during REM sleep. Spectral analysis of the HRV signal and of the respiration signal indicated a higher respiration regularity during deep sleep, and a higher parasympathetic drive was also confirmed by an increase in the coherence between the HRV and the respiration signal in the HF band during NREM sleep. Our findings about sleep stage-dependent variations in the HRV signal and in the respiratory activity are in line with previous evidences and confirm spectral analysis of the HRV and the respiration signal to be a suitable tool for investigating cardiac autonomic modulation and cardio-respiratory coupling during sleep.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299415PMC
http://dx.doi.org/10.3389/fphys.2012.00045DOI Listing

Publication Analysis

Top Keywords

respiration signal
20
sleep
16
hrv signal
16
sleep stages
12
nrem sleep
12
rem sleep
12
analysis hrv
12
hrv respiration
12
signal respiration
12
respiration
9

Similar Publications

Background: Understanding respiratory motions of liver and its surrogate organs is crucial for precise dose delivery in liver cancer radiotherapy. Although these motions have been studied for respiratory motion management in the supine posture, few studies have quantified them and evaluated their correlations in the upright posture.

Purpose: This study quantified the respiratory motions of liver and surrogate organs and evaluated the correlations between the liver motions and surrogate signals for respiratory motion monitoring in both the supine and upright postures.

View Article and Find Full Text PDF

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF

Melatonin's Role in Enhancing Waterlogging Tolerance in Plants: Current Understanding and Future Directions.

Physiol Plant

September 2025

Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.

Waterlogging, increasingly intensified by climate change, limits oxygen availability in the root zone, disrupting carbon and sugar metabolism, leading to energy deficits and oxidative stress that ultimately impair plant growth and productivity. Melatonin, a versatile signaling molecule, mitigates waterlogging-induced stress by enhancing anaerobic respiration and fermentation under oxygen-deprived conditions, upregulating stress-responsive genes, and restoring energy balance through optimized sugar metabolism. It also reduces oxidative damage by strengthening the antioxidant defense system and further improves stress tolerance by modulating phytohormone signaling and influencing rhizosphere microbiome dynamics.

View Article and Find Full Text PDF

Thyroid hormones (TH), primarily triiodothyronine (T3) and thyroxine (T4), are critical regulators of metabolic rate, mitochondrial function, and cellular repair mechanisms. Emerging evidence suggests that thyroid status may significantly influence aging trajectories and longevity through modulation of key cellular pathways. Objective: This review explores the role of thyroid hormones in aging biology, with a focus on their interaction with longevity-associated signaling pathways and the hallmarks of aging.

View Article and Find Full Text PDF

Heartbeat detection and personal authentication using a 60 GHz Doppler sensor.

Front Digit Health

August 2025

Architecture Laboratory, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.

Background: Microwave Doppler sensors, capable of detecting minute physiological movements, enable the measurement of biometric information, such as walking patterns, heart rate, and respiration. Unlike fingerprint and facial recognition systems, they offer authentication without physical contact or privacy concerns. This study focuses on non-contact seismocardiography using microwave Doppler sensors and aims to apply this technology for biometric authentication.

View Article and Find Full Text PDF