A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

In vitro recapitulation of neural development using embryonic stem cells: from neurogenesis to histogenesis. | LitMetric

In vitro recapitulation of neural development using embryonic stem cells: from neurogenesis to histogenesis.

Dev Growth Differ

Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo, Kobe 650-0047, Japan.

Published: April 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Embryonic stem (ES) cells have been successfully used over the past decade to generate specific types of neuronal cells. In addition to its value for regenerative medicine, ES cell culture also provides versatile experimental systems for analyzing early neural development. These systems are complimentary to conventional animal models, particularly because they allow unique constructive (synthetic) approaches, for example, step-wise addition of components. Here we review the ability of ES cells to generate not only specific neuronal populations but also functional neural tissues by recapitulating microenvironments in early mammalian development. In particular, we focus on cerebellar neurogenesis from mouse ES cells, and explain the basic ideas for positional information and self-formation of polarized neuroepithelium. Basic research on developmental signals has fundamentally contributed to substantial progress in stem cell technology. We also discuss how in vitro model systems using ES cells can shed new light on the mechanistic understanding of organogenesis, taking an example of recent progress in self-organizing histogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-169X.2012.01329.xDOI Listing

Publication Analysis

Top Keywords

neural development
8
embryonic stem
8
stem cells
8
generate specific
8
cells
6
vitro recapitulation
4
recapitulation neural
4
development embryonic
4
cells neurogenesis
4
neurogenesis histogenesis
4

Similar Publications