Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We introduce a mixture model whereby each mixture component is itself a mixture of a multivariate Gaussian distribution and a multivariate uniform distribution. Although this model could be used for model-based clustering (model-based unsupervised learning) or model-based classification (model-based semi-supervised learning), we focus on the more general model-based classification framework. In this setting, we fit our mixture models to data where some of the observations have known group memberships and the goal is to predict the memberships of observations with unknown labels. We also present a density estimation example. A generalized expectation-maximization algorithm is used to estimate the parameters and thereby give classifications in this mixture of mixtures model. To simplify the model and the associated parameter estimation, we suggest holding some parameters fixed-this leads to the introduction of more parsimonious models. A simulation study is performed to illustrate how the model allows for bursts of probability and locally higher tails. Two further simulation studies illustrate how the model performs on data simulated from multivariate Gaussian distributions and on data from multivariate t-distributions. This novel approach is also applied to real data and the performance of our approach under the various restrictions is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2011.199 | DOI Listing |