Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
With the compost matrix of pig manure, wheat straw, and spent mushroom substrate, and then inoculated with the Compound Microbe Preparation, the study investigated the effects of the heavy metal Cu on the process of composting. Biolog EcoPlate™ test revealed that at a low content, Cu could improve the capacities of microbial communities to transform and exploit carbon sources in the form of polymer, thus speeding up the decomposition of agricultural wastes, and at a high content, Cu presented inhibiting effect on microbial communities to exploit complex macromolecular carbon sources, thus extending the decomposition of agricultural wastes. Enzyme activity testing showed that at a low content, Cu presented enzyme activity-activating effect at the early period of composting and inhibiting effect in the late period of composting, and at a high content, Cu presented enzyme activity-inhibiting effects through the process of composting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2011.12.087 | DOI Listing |