A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

EMG-force modeling using parallel cascade identification. | LitMetric

EMG-force modeling using parallel cascade identification.

J Electromyogr Kinesiol

Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, Canada.

Published: June 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Measuring force production in muscles is important for many applications such as gait analysis, medical rehabilitation, and human-machine interaction. Substantial research has focused on finding signal processing and modeling techniques which give accurate estimates of muscle force from the surface-recorded electromyogram (EMG). The proposed methods often do not capture both the nonlinearities and dynamic components of the EMG-force relation. In this study, parallel cascade identification (PCI) is used as a dynamic estimation tool to map surface EMG recordings from upper-arm muscles to the induced force at the wrist. PCI mapping involves generating a parallel connection of a series of linear dynamic and nonlinear static blocks. The PCI model parameters were initialized to obtain the best force prediction. A comparison between PCI and a previously published Hill-based orthogonalization scheme, that captures physiological behaviour of the muscles, has shown 44% improvement in force prediction by PCI (averaged over all subjects in relative-mean-square sense). The improved performance is attributed to the structural capability of PCI to capture nonlinear dynamic effects in the generated force.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelekin.2011.10.012DOI Listing

Publication Analysis

Top Keywords

parallel cascade
8
cascade identification
8
force prediction
8
force
6
pci
6
emg-force modeling
4
modeling parallel
4
identification measuring
4
measuring force
4
force production
4

Similar Publications