Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The complexity of hand function is such that most existing upper limb rehabilitation robotic devices use only simplified hand interfaces. This is in contrast to the importance of the hand in regaining function after neurological injury. Computer vision technology has been used to identify hand posture in the field of Human Computer Interaction, but this approach has not been translated to the rehabilitation context. We describe a computer vision-based classifier that can be used to discriminate rehabilitation-relevant hand postures, and could be integrated into a virtual reality-based upper limb rehabilitation system. The proposed system was tested on a set of video recordings from able-bodied individuals performing cylindrical grasps, lateral key grips, and tip-to-tip pinches. The overall classification success rate was 91.2%, and was above 98% for 6 out of the 10 subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR.2011.5975421 | DOI Listing |