A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Species distribution, abundance, and long-term survival are determined by biotic and abiotic regimes. However, little is known about the importance of these factors in species range expansion. Styela plicata is a solitary ascidian introduced all over the world by ship fouling, including salt marsh habitats, where introduced populations must tolerate high seasonal variations in temperature and salinity. To determine the seasonal stress levels in a salt marsh population of S. plicata, we quantified heat shock protein (hsp70) gene expression using quantitative real-time PCR throughout a 2-year cycle. Results showed that hsp70 expression varied over time, with higher stress levels recorded in summer and winter. Periodic conditions of high temperatures, particularly when coupled with low salinities, increased hsp70 gene expression. Mortality events observed every year around June were concurrent with sharp increases in temperature (>6°C), indicating that drastic changes in abiotic factors may overwhelm the observed stress response mechanisms. Determining the ability of introduced species to cope with stress, and the thresholds above which these mechanisms fail, is fundamental to predict the potential expansion range of introduced species and design efficient containment plans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368029PMC
http://dx.doi.org/10.1007/s12192-012-0321-yDOI Listing

Publication Analysis

Top Keywords

stress levels
12
hsp70 gene
12
gene expression
12
styela plicata
8
temperature salinity
8
salt marsh
8
introduced species
8
stress
5
introduced
5
levels time
4

Similar Publications